
Table of Contents

Java’s Synchronizing Mechanism ... 3

Our bathroom morning bathroom routine ... 3

Simulate our family morning routine .. 4

We have a concurrency Issue... 8

We need to synchronize! .. 9

An uncooperative family member .. 11

Controlling the uncooperative family member: private synchronizing .. 13

Storm tracker POJO concerns.. 16

Issue one ... 17

Issue two ... 17

Switching ... 18

Cloning .. 20

Miscellaneous synchronization examples and observations .. 21

Static Synchronization ... 26

DB connection example .. 27

Sharing a single DB connection ... 29

Two timelines .. 33

Waiting in a synchronized block .. 34

The Mutex class ... 40

Method Summary ... 40

Home Brewed Mutex .. 41

Pardon the interruption... 47

A Mutex class test ... 48

The Mutex wait ... 56

Home Brewed Conditional Variable .. 59

Class CondVar .. 59

Method Summary ... 59

A pseudo code example .. 61

Wait ... 63

Signal ... 63

The Conditional Variable implementation .. 64

Producer and consumer example timeline ... 65

Timelines. .. 66

A simple example .. 68

We plant a BUG ... 69

BUG Note .. 71

A Safe FIFO ... 72

Method Summary ... 72

Back to our consumer/producer example .. 73

Safe Q implementation .. 74

Thread returns from run: a logger thread ... 77

Mutex with a timeout .. 87

An example synchronized wait time out .. 87

The Mutex implementation .. 88

Test Example ... 90

CountDown class ... 95

Example ... 98

Java’s Synchronizing Mechanism
Our bathroom morning bathroom routine

In my house we have three family members (folks F1,F2,F3) who like to take showers in the morning! We have one

bathroom (with one shower stall!). Here is how we cooperatively manage on a typical morning.

The bathroom door has a lock. When closed, the door automatically locks from the outside; you cannot

get in without the key. We have just ONE key which sits on a hook in the hallway outside the bathroom.

All family members have the same morning routine in this order
1. Perform morning chores
2. Have breakfast
3. Take a shower (requires the shared resource – the bathroom)
4. Get dressed

Example shower timeline

F1:

• time 7:00am: grabs the key from the hook

• time 7:00am: unlocks and enters the bathroom with the key

• starts shower

F2 :

• time 7:02am: goes to the hallway and sees NO key

• time 7:02am: waits in the hallway for the key!

F3 :

• time 7:04am: goes to the hallway and sees NO key

• time 7:04am: waits in the hallway for the key!

F1:

• time 7:10: leaves the bathroom and replaces the key on the hook

F2:

• time 7:10 grabs the key from the hook

• time 7:10am unlocks and enters the bathroom with the key

• start shower

• time 7:14: leaves the bathroom and replaces the key on the hook

F3:

• time 7:14 grabs the key from the hook

• time 7:14am unlocks and enters the bathroom with the key

• starts shower

• time 7:19: leaves the bathroom and replaces the key on the hook

Simulate our family morning routine
We write code to simulate our family morning routine.

First we code a logger for timestamped logging to console

package Log;

public class Logger {

 public static void log(String text) {

 long timeStamp = System.currentTimeMillis();

 System.out.println(timeStamp + " " + text);

 }

 public static void logThisJunk(String text) {

 // just ignore the text -- it is junk!!!

 }

}

This code uses up CPU. We simulate time taken to accomplish various morning routines like getting dressed or

taking a show. The elapsed times do not vary much at all but that is OK for our simple simulation.

package simulation;

import Log.Logger;

public class CpuHog {

 public static void doIt() {

 final int big = 10000000;

 double junkA =1;

 for (int I = 0; I < big ; I ++) {

 junkA = junkA + Math.log(I+.004);

 }

 double junkB = 1; ;

 for (int I = 0; I < big ; I ++) {

 junkB = junkB + Math.sin(I);

 junkB = junkB - junkB/10;

 }

 double junkC =1;

 for (int I = 0; I < big ; I ++) {

 junkC = junkC + Math.log(I+.004);

 }

 double junkD = 1; ;

 for (int I = 0; I < big ; I ++) {

 junkD = junkD + Math.sin(I);

 junkD = junkD - junkD/10;

 }

 Logger.logThisJunk("Junk - ignore this! " + junkA + " " + junkB + " " + junkC + " " + junkD);

 }

}

Our bathroom

package bathroom;

import Log.Logger;

import simulation.CpuHog;

public class Bathroom {

 public void takeShower() {

 Logger.log("Thread: " + Thread.currentThread().getId() + " begin Shower");

 long start = System.currentTimeMillis();

 // use up some cpu to slow things down.. to simulate time taken to shower

 CpuHog.doIt();

 long done = System.currentTimeMillis();

 Logger.log("Thread: " + Thread.currentThread().getId() +

 " completed Shower in " + (done-start) + " ms");

 }

}

A Family member

package family;

import Log.Logger;

import bathroom.Bathroom;

import simulation.CpuHog;

public class FamilyMember implements Runnable {

 protected final Bathroom bathroom;

 public FamilyMember (Bathroom bathroom) {

 this.bathroom = bathroom;

 }

 @Override

 public void run() {

 performTask("My first morning task: Do my morning chores");

 performTask("Have breakfast");

 this.bathroom.takeShower();

 performTask("My last morning task: Get dressed");

 }

 Private void performTask (String task) {

 Logger.log("Thread " + Thread.currentThread().getId() + " Start " + task);

 CpuHog.doIt();

 Logger.log("Thread " + Thread.currentThread().getId() + " Completed " + task);

 }

}

Our controller creates and starts the threads. A thread represents one family member morning routine.

Remember, all family members share the single bathroom.

package bathroomControl;

import resource.Bathroom;

import workers.FamilyMember;

public class BathroomController {

 private Thread[] threadArr;

 private final int numberFolks;

 public BathroomController(int numberFolks) {

 this.numberFolks = numberFolks;

 this.threadArr = new Thread[numberFolks];

 Bathroom bathroom = new Bathroom();

 for (int I = 0; I < numberFolks; I++) {

 threadArr[I] = new Thread(new FamilyMember(bathroom));

 }

 }

 public void startThreads() {

 for (int I = 0; I < numberFolks; I++) {

 threadArr[I].start();

 }

 }

}

Finally, we need a main.

package appControl;

import bathroom.BathroomController;

public class Main {

 public static void main(String[] args) {

 BathroomController bathroomController = new BathroomController(3);

 bathroomController.startThreads();

 }

}

We have a concurrency Issue

We execute a run and notice a concurrency issue.

1645820340108 Thread: 13 Start My first morning task: Do my morning chores
1645820340109 Thread: 14 Start My first morning task: Do my morning chores
1645820340110 Thread: 15 Start My first morning task: Do my morning chores
1645820341474 Thread: 14 Completed My first morning task: Do my morning chores
1645820341474 Thread: 14 Start Have breakfast
1645820341475 Thread: 13 Completed My first morning task: Do my morning chores
1645820341475 Thread: 13 Start Have breakfast
1645820341499 Thread: 15 Completed My first morning task: Do my morning chores
1645820341499 Thread: 15 Start Have breakfast
1645820342821 Thread: 14 Completed Have breakfast
1645820342821 Thread: 14 begin Shower
1645820342822 Thread: 13 Completed Have breakfast
1645820342822 Thread: 13 begin Shower
1645820342846 Thread: 15 Completed Have breakfast
1645820342846 Thread: 15 begin Shower
1645820344170 Thread: 14 completed Shower in 1348 ms
1645820344170 Thread: 14 Start My last morning task: Get dressed
1645820344174 Thread: 13 completed Shower in 1352 ms
1645820344174 Thread: 13 Start My last morning task: Get dressed
1645820344215 Thread: 15 completed Shower in 1369 ms
1645820344215 Thread: 15 Start My last morning task: Get dressed
1645820345518 Thread: 14 Completed My last morning task: Get dressed
1645820345519 Thread: 13 Completed My last morning task: Get dressed
1645820345564 Thread: 15 Completed My last morning task: Get dressed

Elapsed time 1645820345564 – 1645820340108 = 5456ms

Family members can and do perform their tasks at the same time – concurrently. The previous sentence applies to

all tasks EXCEPT for the shower – the shared resource. The code clearly does NOT work! The threads run

concurrently! BUT we do NOT want concurrent showering! We want a thread (family member) to WAIT when

another family member is showering. We need a bathroom lock.

We need to synchronize!

We use the java synchronized mechanism to fix the issue. We add the bathroom lock that we discussed earlier.

package bathroom;

import Log.Logger;

import simulation.CpuHog;

public class Bathroom {

 public synchronized void takeShower() {

 Logger.log("Thread: " + Thread.currentThread().getId() + " begin Shower");

 long start = System.currentTimeMillis();

 // use up some cpu to slow things down.. to simulate time taken to shower

 CpuHog.doIt();

 long done = System.currentTimeMillis();

 Logger.log("Thread: " + Thread.currentThread().getId() +

 " completed Shower in " + (done-start) + " ms");

 }

}

We execute a run.

1645821327270 Thread: 13 Start My first morning task: Do my morning chores
1645821327272 Thread: 14 Start My first morning task: Do my morning chores
1645821327286 Thread: 15 Start My first morning task: Do my morning chores
1645821328648 Thread: 14 Completed My first morning task: Do my morning chores
1645821328648 Thread: 15 Completed My first morning task: Do my morning chores
1645821328648 Thread: 14 Start Have breakfast
1645821328648 Thread: 15 Start Have breakfast
1645821328649 Thread: 13 Completed My first morning task: Do my morning chores
1645821328649 Thread: 13 Start Have breakfast
1645821329986 Thread: 14 Completed Have breakfast
1645821329987 Thread: 14 begin Shower
1645821329991 Thread: 13 Completed Have breakfast
1645821329992 Thread: 15 Completed Have breakfast
1645821331332 Thread: 14 completed Shower in 1345 ms
1645821331332 Thread: 14 Start My last morning task: Get dressed
1645821331332 Thread: 15 begin Shower
1645821332639 Thread: 15 completed Shower in 1307 ms
1645821332639 Thread: 15 Start My last morning task: Get dressed
1645821332639 Thread: 13 begin Shower
1645821332639 Thread: 14 Completed My last morning task: Get dressed
1645821333935 Thread: 15 Completed My last morning task: Get dressed
1645821333935 Thread: 13 completed Shower in 1296 ms
1645821333935 Thread: 13 Start My last morning task: Get dressed
1645821335217 Thread: 13 Completed My last morning task: Get dressed

Observe that showers are no longer concurrent; other tasks remain concurrent. This is good!

Shower times

1645821331332 Thread: 14 completed Shower in 1345 ms
1645821332639 Thread: 15 completed Shower in 1307 ms
1645821333935 Thread: 13 completed Shower in 1296 ms

Timing observations and arithmetic

The end-to-end time for our TWO runs.

Case one: without the bathroom lock. The three showers are concurrent.
Elapsed time 1645820345564 – 1645820340108 = 5456ms

Case two: with the lock. The three showers are not concurrent.
Elapsed time 1645821335217 – 1645821327270 = 7947ms

The locked version took 2491ms longer
7947 - 5456 = 2491ms

Combined locked shower times 1345 + 1307 + 1296 = 3948

Average locked shower time 3948/3 = 1316

Finally! If we subtract 2 average shower times from the lock elapsed time we get close to the concurrent elapsed

time of 5456ms

7947 - 1316 – 1316 = 5315

Sorry, if I got carried away with the math

An uncooperative family member

We now introduce a fourth family member; an uncooperative family member Bailey

Our family mornings depend on all family members cooperating. Here is an example of an un-cooperative member

who delays everyone else’s shower!

Bailey grabs the bathroom key and instead of taking a quick shower decides to walk over to the local coffee shop!

The other family members are locked out of the bathroom! Call a lock smith!

package family;

import Log.Logger;

import bathroom.Bathroom;

import simulation.CpuHog;

public class Bailey extends FamilyMember implements Runnable {

 public Bailey (Bathroom bathroom) {

 super(bathroom);

 }

 @Override

 public void run() {

 synchronized (bathroom)

 {

 Logger.log("Thread: " + Thread.currentThread().getId()

 + " Bailey walks to coffee shop with the bathroom key!");

 int hogs = 20;

 while (hogs > 0) {

 CpuHog.doIt();

 hogs--;

 }

 Logger.log("Thread: " + Thread.currentThread().getId()

 + " Bailey back from coffee shop about to return the key");

 }

 //Now do the family tasks

 super.run();

 }

}

The bathroom controller adds Bailey to the family.

package bathroom;

import family.Bailey;

import family.FamilyMember;

public class BathroomController {

 private Thread[] threadArr;

 private Thread threadBailey;

 private final int numberFolks;

 public BathroomController(int numberFolks) {

 this.numberFolks = numberFolks;

 this.threadArr = new Thread[numberFolks];

 Bathroom bathroom = new Bathroom();

 for (int I = 0; I < numberFolks; I++) {

 threadArr[I] = new Thread(new FamilyMember(bathroom));

 }

 Bailey bailey = new Bailey(bathroom);

 threadBailey = new Thread(bailey);

 }

 public void startThreads() {

 for (int I = 0; I < numberFolks; I++) {

 threadArr[I].start();

 }

 threadBailey.start();

 }

}

We execute a run.

1645824806618 Thread: 13 Start My first morning task: Do my morning chores
1645824806618 Thread: 15 Start My first morning task: Do my morning chores
1645824806618 Thread: 14 Start My first morning task: Do my morning chores
1645824806619 Thread: 16 Bailey walks to coffee shop with the bathroom key!
1645824808006 Thread: 13 Completed My first morning task: Do my morning chores
1645824808006 Thread: 13 Start Have breakfast
1645824808014 Thread: 14 Completed My first morning task: Do my morning chores
1645824808014 Thread: 14 Start Have breakfast
1645824808017 Thread: 15 Completed My first morning task: Do my morning chores
1645824808017 Thread: 15 Start Have breakfast
1645824809339 Thread: 13 Completed Have breakfast
1645824809343 Thread: 14 Completed Have breakfast
1645824809349 Thread: 15 Completed Have breakfast
1645824832595 Thread: 16 Bailey back from coffee shop about to return the key
1645824832595 Thread: 16 Start My first morning task: Do my morning chores
1645824832595 Thread: 15 begin Shower
1645824833910 Thread: 15 completed Shower in 1315 ms
1645824833910 Thread: 15 Start My last morning task: Get dressed
1645824833910 Thread: 14 begin Shower
1645824833916 Thread: 16 Completed My first morning task: Do my morning chores
1645824833916 Thread: 16 Start Have breakfast
1645824835255 Thread: 15 Completed My last morning task: Get dressed
1645824835257 Thread: 16 Completed Have breakfast
1645824835258 Thread: 14 completed Shower in 1348 ms
1645824835258 Thread: 14 Start My last morning task: Get dressed
1645824835258 Thread: 13 begin Shower
1645824836565 Thread: 13 completed Shower in 1307 ms
1645824836565 Thread: 16 begin Shower
1645824836565 Thread: 13 Start My last morning task: Get dressed
1645824836565 Thread: 14 Completed My last morning task: Get dressed
1645824837871 Thread: 16 completed Shower in 1306 ms
1645824837871 Thread: 16 Start My last morning task: Get dressed
1645824837872 Thread: 13 Completed My last morning task: Get dressed
1645824839157 Thread: 16 Completed My last morning task: Get dressed

Bailey held things up for 26 seconds - 1645824832595 - 1645824806619 = 25976

The end-to-end time for TWO runs.

Case one: with the lock and without Bailey
Elapsed time 1645821335217 – 1645821327270 = 7947

Average shower time 1316

Case two: with the lock and with Bailey
Elapsed time 1645824839157 – 1645824806618 = 32539

25976 + 7947 + 1316= 35239 amazing!!!!

Controlling the uncooperative family member: private synchronizing

Here we enhance our code and prevent Bailey from disrupting our morning routine. All code stays the same

except for our bathroom class which now will protect itself privately (self-defense!). We do not change Bailey.

package bathroom;

import Log.Logger;

import simulation.CpuHog;

public class Bathroom {

 private final Object myLock = new Object();

 public void takeShower() {

 synchronized(myLock) {

 Logger.log("Thread: " + Thread.currentThread().getId() + " begin Shower");

 long start = System.currentTimeMillis();

 // use up some cpu to slow things down.. to simulate time taken to shower

 CpuHog.doIt();

 long done = System.currentTimeMillis();

 Logger.log("Thread: " + Thread.currentThread().getId()+" completed Shower in”

 + (done-start) + " ms");

 }

 }

}

We execute a run.

1645826064219 Thread: 14 Start My first morning task: Do my morning chores
1645826064219 Thread: 15 Start My first morning task: Do my morning chores
1645826064221 Thread: 13 Start My first morning task: Do my morning chores
1645826064251 Thread: 16 Bailey walks to coffee shop with the bathroom key!
1645826065686 Thread: 14 Completed My first morning task: Do my morning chores
1645826065686 Thread: 14 Start Have breakfast
1645826065704 Thread: 15 Completed My first morning task: Do my morning chores
1645826065704 Thread: 15 Start Have breakfast
1645826065706 Thread: 13 Completed My first morning task: Do my morning chores
1645826065706 Thread: 13 Start Have breakfast
1645826067028 Thread: 15 Completed Have breakfast
1645826067028 Thread: 15 begin Shower
1645826067031 Thread: 14 Completed Have breakfast
1645826067034 Thread: 13 Completed Have breakfast
1645826068336 Thread: 15 completed Shower in 1308 ms
1645826068336 Thread: 15 Start My last morning task: Get dressed
1645826068336 Thread: 13 begin Shower
1645826069671 Thread: 13 completed Shower in 1335 ms
1645826069671 Thread: 14 begin Shower
1645826069671 Thread: 13 Start My last morning task: Get dressed
1645826069672 Thread: 15 Completed My last morning task: Get dressed
1645826071010 Thread: 14 completed Shower in 1338 ms
1645826071010 Thread: 14 Start My last morning task: Get dressed
1645826071010 Thread: 13 Completed My last morning task: Get dressed
1645826072318 Thread: 14 Completed My last morning task: Get dressed
1645826090291 Thread: 16 Bailey back from coffee shop about to return the key
1645826090291 Thread: 16 Start My first morning task: Do my morning chores
1645826091573 Thread: 16 Completed My first morning task: Do my morning chores
1645826091573 Thread: 16 Start Have breakfast
1645826092855 Thread: 16 Completed Have breakfast
1645826092855 Thread: 16 begin Shower
1645826094136 Thread: 16 completed Shower in 1281 ms
1645826094136 Thread: 16 Start My last morning task: Get dressed
1645826095418 Thread: 16 Completed My last morning task: Get dressed

1645826072318 - 1645826064219 = 8099ms

So, all the family members except Bailey complete their routine in 8099ms.

Notice: Bailey logged incorrectly! Bailey did not have the bathroom key!!!

Storm tracker POJO concerns

We are in the middle of a massive storm – a Nor’easter!

Class: Storm Tracking Data. This class is a POJO. Tracking a storm is complicated and requires a bunch of data. The

class conforms to Java Bean standard: all members are private, and each member has s setter and getter pair

etcetera. The class implements the Storm Tracking Read Only Data interface (see below). The actual related data

changes over time as the storm location and conditions constantly change. We decide that our application will

calculate a new set of data every 15 minutes. The Storm Tracking Data is available to reader threads via the get

latest method. We do NOT want reader threads to have write access to the underlying Storm Tracking Data

Rule: readers cannot change the data

Class: Storm Track Calculator. The class method calculate data is invoked by a controlling class every 15 minutes

public class StormTrackCalulator implements StormTrackingReadOnlyData {

 private StormTrackingData dataPacket = null;

 void init(){

 calculateData();

 }

 void calculateData() {

 get input required data from external sources and sensors etc.

 perform calulations

 change state of our dataPacket with the new results of the calculations using setters

 }

 public StormTrackingReadOnlyData getLatest() {

 StormTrackingReadOnlyData returnData = dataPacket;

 return returnData;

 }

}

Storm Tracking Read Only Data is an interface.

public interface StormTrackingReadOnlyData {

 Include here ALL of the StormTrackingData getters methods. Some examples…

 public int getHumidity();

 public double getBarometricPressure();

 public double getDewPoint();

 public WindData getWindData();

 etc…

}

Wind Data is a user defined java class that contains all wind related data. ALARM! This is a problem waiting to

happen!

The above design is a mess. It has so many issues that we may need a long int just to count them.

Issue one

Timeline. Here the calculation takes about 2 minutes

Time Controller Reader A Reader C

10:00 Invokes init

10:02 Starts 3 reader threads

10:03 get latest

 latest.setHumidity(87)1

 get latest

 WindData wd =
latest.getWindData()2

 wd.setMaxWindGust(120);

All readers share the same Storm Tracking Data object- with the 10:00 related data

1: Our read only interface prevents reader A from setting (changing) the humidity. It will not compile!

2: However, reader C is allowed to break our rule regarding readers. The interface allows the line:

WindData wd = latest.getWindData().

Now, once the reader has a reference to the wind data it can invoke the wind data setters – here it changes the

maximum wind gust. The problem is that change affects reader A (all current readers) – all readers share the same

Storm Tracking Data object.

Issue two

Timeline

Time Controller Reader A

10:00 Invokes init

10:02 Starts N reader threads

10:15 Start: calculate Data

10:16 get Latest (the ‘’grab’)

10:17 Completed: calculate Data

Issue. Our controller is in the middle of refreshing its private member Storm Tracking Data via its setters; during

the refresh seters are invoked with refreshed data. At various points of time our data packet has data from the

10:00 run (not refreshed yet) and data from the current 10:15 run; the data is temporarily in an inconsistent state.

The reader(s) in the meantime can grab a reference to the data – not good!

Can we synchronize like the following? Yes but we choose not to!

 public class StormTrackCalulator implements StormTrackingReadOnlyData {

 private StormTrackingData dataPacket = null;

 void synchronized calculateData() {

 input required data from external sources and sensors

 perform calulations ➔ results

 change state of dataPacket with new results via the StormTrackingData setters

 }

 public synchronized StormTrackingReadOnlyData getLatest() {

 StormTrackingReadOnlyData returnData = dataPacket;

 return returnData;

 }

}

This not acceptable. While a calculate Data invocation is executing all reader calls to get Latest will be held up for

up to 2 minutes.

Switching

Alternative. Create a new data packet and after its state is set and consistent (all setter invoked) then SWITCH

public class StormTrackCalulator implements StormTrackingReadOnlyData {

 private StormTrackingData dataPacket = null;

 void calculateData() {

 input required data from external sources and sensors

 perform calulations

 StormTrackingData newDataPacket = new StormTrackingData()

 Call newDataPacketsetters with the new results of the calculations

 dataPacket = newDataPacket // SWITCH

 }

 public StormTrackingReadOnlyData getLatest() {

 StormTrackingReadOnlyData returnData = dataPacket;

 return returnData;

 }

}

Do we need to add a private lock and synchronize? No. The following is NOT necessary for thread safety.

void calculateData() {

 ….

 synchronized(privateLock{

 dataPacket = newDataPacket // SWITCH

 }

 …

}

public StormTrackingReadOnlyData getLatest() {

 StormTrackingReadOnlyData returnData;

 synchronized(privateLock{

 returnData = dataPacket;

 }

 return returnData;

}

If we synchronize then readers are competing to get the lock. The lock will by unlocked quickly but there would be

a performance hit if there are frequent readers.

Alas!, there is NO issue here. We do NOT need the lock at all!. Get rid of it!

Google this “java assignments thread safety”

I found this-> https://www.oreilly.com/library/view/java-performance-tuning/0596000154/ch10s06.html

Cloning

Back to Issue two which we have not resolved. Remember, the issue was demonstrated earlier when a reader was

able to change the Wind Data.

We can design our readers so that they cooperatively do not change the data. In this case, we do NOT

programmatically prevent them; we depend on the readers being cooperative (like our family members showering

in the morning).

One way to programmatically prevent readers from messing up other readers is to give each reader its own copy

(clone) of the data. Of course, there is a performance and memory impact. In a ‘close call’ case the

dataPacketToClone may be either one of two packets; this is when a reader reads just as we are performing our

15-minute refresh followed by our SWITCH! This is ok!

void calculateData() {

 //…

 // SWITCH

 dataPacket = newDataPacket

 }

public StormTrackingReadOnlyData getLatest() {

 StormTrackingData dataPacketToClone = this.dataPacket;

 StormTrackingData returnData = clone(dataPacketToClone)

 return returnData;

}

private StormTrackingData clone(StormTrackingData clonee){

 // etc…

}

Remember the two object reference java assignments above are thread-sage.

Miscellaneous synchronization examples and observations
Here we look at coding examples. In each case multiple running (concurrent) threads have access (have a

reference) to an object of the class XXX.

Compare these two implementations of class XXX.

Example One

public class XXX {

 public synchronized double xxx() {

 double result = 0;

 // calculate result

 return result;

 }

}

public class XXX {

 public double xxx() {

 synchronized (this) {

 double result = 0;

 // calculate result

 return result;

 }

 }

}

Example two

Here two public methods are synchronized. The object’s one monitor lock must be obtained before entering the

methods. Our two methods cannot run concurrently. Is this the behavior you want? -- see example three just

below

public class XXX {

 public synchronized double xxx() {

 double result = 0;

 // calculate result

 return result;

 }

 public synchronized double yyy() {

 double result = 0;

 // calculate result

 return result;

 }

}

Example three

Compare this example to example two.

public class XXX {

 private Object xxxLock = new Object();

 private Object yyyLock = new Object();

 public double xxx() {

 double result = 0;

 synchronized (xxxLock) {

 // calculate result

 }

 return result;

 }

 public double yyy() {

 double result = 0;

 synchronized (yyyLock) {

 // calculate result

 }

 return result;

 }

}

Note: If your class uses multiple locks you may consider a separate class for each function, i.e., write multiple

classes. Are the functions related? If the classes share functionality consider an abstract base class. Always follow

the KISS rule.

Example four

This is a horror show. Notice the temporal ordering of obtaining the locks. NEVER do this! This is a DEADLOCK

waiting to happen!.

public class XXX {

 private Object xxxLock = new Object();

 private Object yyyLock = new Object();

 public void xxx() {

 // ...

 synchronized (xxxLock) {

 // ...

 synchronized (yyyLock) {

 //...

 }

 }

 }

 public void yyy() {

 // ...

 synchronized (yyyLock) {

 // ...

 synchronized (xxxLock) {

 //...

 }

 }

 }

}

Example five

This is fancy BUT it will NOT cause a dreaded DEADLOCK.

public class XXX {

 private Object xxxLock = new Object();

 private Object yyyLock = new Object();

 public void xxx() {

 // ...

 synchronized (xxxLock) {

 // ...

 synchronized (yyyLock) {

 //...

 }

 //...

 }

 //...

 }

 public void yyy() {

 // ...

 synchronized (yyyLock) {

 // ...

 }

 //...

 }

}

Static Synchronization
An object (instance) has access to TWO monitors. Each instance has its own ‘instance monitor’ – we have been

using this monitor in our previous examples. Additionally, all instances of a class share a second common ‘static

monitor.’

Here the class static monitor ‘protects’ the instance Counter. An instance of XXX has its own synchronized monitor

- no sharing.

public class XXX {

 private static int instanceCounter = 0;

 private synchronized static void incrementInstanceCount() {

 instanceCounter = instanceCounter + 1;

 }

 public synchronized static int getInstanceCount() {

 return (instanceCounter);

 }

 // constuctor

 public XXX() {

 XXX.incrementInstanceCount();

 }

 public synchronized void doSomethingSynched() {

 }

 public synchronized void doSomethingElseSynched() {

 }

}

DB connection example
In this example we have multiple worker threads. A worker does work and then persists the work results to a DB.

public class Worker implements Runnable {

 protected final DBConnection conn;

 public Worker (DBConnection conn) {

 this. conn = conn;

 }

 @Override

 public void run() {

 // do a bunch of work

 WorkResulst results = ….

 // use conn to send results transactions to DB

 performTransaction(results)

 }

 private void performTransaction(WorkResulst results){

 try{

 conn.beginTran();

 use conn to do a bunch of inserts and updates etc

 conn.commitTran()

 } catch (Exception E){

 log the issue

 conn.rollback();

 }

 }

}

A controller creates and starts the workers. Workers depend on the controller for an instance representing a DB

connection.

Here the controller creates N workers and N DB connections. Each worker gets their own connection. This is

end-to-end concurrency; workers can both work and perform the DB transactions concurrently. This is like having

each family member having their own bathroom – heaven!

public class WorkController {

 private Thread[] threadArr;

 private final int numberWorkers;

 public WorkController (int numberWorkers) {

 this. numberWorkers = numberWorkers;

 this.threadArr = new Thread[numberWorkers];

 for (int I = 0; I < numberWorkers; I++) {

 threadArr[I] = new Thread(new Worker(new DBConnection());

 }

 }

 public void startThreads() {

 for (int I = 0; I < numberWorkers; I++) {

 threadArr[I].start();

 }

 }

}

Now we discover the unwelcome news. Suppose there is a system constraint with which you (the designer) must

live. Your masterpiece is allocated a single DB connection. You must redesign the above!

Sharing a single DB connection

We carry on. Here is our new controller. There is now a single shared DB connection.

public class WorkController {

 private Thread[] threadArr;

 private final int numberWorkers;

 public WorkController (int numberWorkers) {

 this. numberWorkers = numberWorkers;

 this.threadArr = new Thread[numberWorkers];

 DBConnection sharedConn = new new DBConnection();

 for (int I = 0; I < numberWorkers; I++) {

 threadArr[I] = new Thread(new Worker(sharedConn));

 }

 }

 public void startThreads() {

 for (int I = 0; I < numberWorkers; I++) {

 threadArr[I].start();

 }

 }

}

Our Worker needs a change. Multiple workers can no longer concurrently access the DB connection; the

connection is now shared.

The following – of course - will NOT work! Each worker has its own monitor!

 public void run() {

 // do a bunch of work

 WorkResulst results = ….

 Synronized (this){

 // use conn to send results transactions to DB

 performTransaction(results);

 }

 }

We work on!

Solution

Create a private lock like our bathroom – except here the lock must be static - shared by all worker instances. The

workers ‘know’ that the shared resource connection is not (may not be) thread safe and so the workers take

charge and force the DB work to be safe! Kudos to the workers!

public class Worker implements Runnable {

 private final static Object staticPrivateLock = new Object()

 protected final DBConnection conn;

public void run() {

 // do a bunch of work

 WorkResulst results = ….

 synronized (Worker.staticPrivateLock){

 // use conn to send results transactions to DB

 performTransaction(results);

 }

 }

etc…

Mutex implements the following interface.

public void lock() throws Exception

public void unlock()

Note that our DB transactions are accomplished by a bunch of java statements. The group of statements is

surrounded by a lock

Synchronized (XXX){ // lock monitor

 Perform java DB related statements

} // unlock monitor

Something to be on the ‘look for.’ The running thread may experience a ‘context switch’ right in the middle of the

statements. The thread is no longer running BUT has/keeps hold of the lock. As a rule, keep the code within a

locked block as short and fast as possible. Unlocking quickly gives other threads quicker access to the lock and

lessens the chances of a thread experiencing a ‘context switch’ while holding the lock.

So, KISS and KIQ - keep it simple AND keep it quick!

Two timelines

Example timeline where each worker has its own connection

Worker A Worker B Worker C Worker D

Work: start Work: start

 Work: start

Work: done Work: done

Send results to DB: start Send results to DB: start Work: done

Send results to DB: done Send results to DB: start Work: start

 Send results to DB: done Work: done

 Send results to DB: start

 Send results to DB: done

Example Timeline with our constraint. The workers share a single connection.

Worker A Worker B Worker C Worker D

Work: start Work: start

 Work: start

Work: done Work: done

Send results to DB: start Work: done

Send results to DB: done Work: start

 Send results to DB: start Work: done

 Send results to DB: done

 Send results to DB: start

 Send results to DB: done

 Send results to DB: start

Waiting in a synchronized block
The synchronized mechanism allows a thread that currently holds a monitor to enter a wait state.

Here is an example timeline for the simple case of TWO threads; a waiter (Thread A) and one notifier (Thread B).

Both treads have a reference to a shared single Object xxx;

Thread A acquires the xxx monitor (enters the synched block)

Thread A calls the wait method in the synch block; this releases the hold on the monitor and puts the thread it a

wait state (it stops running)

Thread B acquires the same xxx monitor and (while holding it) invokes the xxx notify method

Thread A reacquires the monitor and proceeds at the line of code right after the wait call

Note:

Temporal ordering issue: The Thread B notify MUST be executed AFTER the Thread A wait! Such required

timing (wait before notifying) may be tricky in a multi-threaded system.

A thread that signals may:

• Hope that another thread(s) is waiting

• Know that another thread(s) is waiting

• Send a signal in case another thread(s) is waiting – this is what our Mutex class will do! (more later)

• Send a signal too early – there are NO waiting thread(s) now

• Etcetera – you get the point!

We will explore the synchronized wait and notify mechanism again later in this article when we create our home

brewed Mutex class. In the meantime, we took a look..

An example

Our worker thread waits in its run method until notified and then proceeds to do its work. We call the shared

single Object the ‘work Signal.’

Worker thread with a bunch of logging follows. The worker acquires the monitor and waits before doing its work.

The main thread creates and starts a worker. We pause in main via the call System.in.read() to simulate time

passing before we signal our worker.

package workers;

import Log.Logger;

public class Worker implements Runnable {

 private final String myName;

 private final Object workSignal;

 public Worker(String name, Object workSignal) {

 myName = name;

 this.workSignal = workSignal;

 }

 @Override

 public void run() {

 Logger.log(myName + " Begin run. About to enter synch block ");

 /// can do a bunch of pre-work stuff here before waiting

 synchronized (workSignal) {

 Logger.log(myName +

 " In synch block. About to wait for signal to start working");

 try {

 workSignal.wait();

 } catch (Exception e) {

 Logger.log(myName + " In synch block. Wait was interrupted");

 }

 Logger.log(myName +

 " In synch block. About to return from wait. Now can do some work...");

 }

 Logger.log(myName + " Exited synch block and run()");

 }

}

Controller

package resource;

import java.io.IOException;

import Log.Logger;

import workers.Worker;

public class WorkerController {

 private Thread[] workerThread;

 private final int numWorkers;

 private final Object workSignal;

 public WorkerController(String[] workerNames) {

 workSignal = new Object();

 numWorkers = workerNames.length;

 workerThread = new Thread[numWorkers];

 for (int I = 0; I < numWorkers; I++) {

 workerThread[I] = new Thread(new Worker(workerNames[I], workSignal));

 }

 }

 public void startThreads() {

 Logger.log("Work Controller: starting workers. Count = " + numWorkers);

 for (int I = 0; I < numWorkers; I++) {

 workerThread[I].start();

 }

 Logger.log("Work Controller: started " + numWorkers+ " workers.");

 Logger.log("Work Controller: pause before sending signal... Hit enter to Signal");

 try {

 System.in.read(); // Stall before sending signal

 } catch (IOException e1) {

 }

 synchronized(workSignal) {

 workSignal.notify();

 }

 Logger.log("Work Controller sent signal and completed");

 }

}

A test run with ONE worker – Amy!

package appControl;

import Log.Logger;

import resource.WorkerController;

public class Main {

 public static void main(String[] args) {

 String workerNameArr[] = {"Amy"} ;

 Logger.log("Main thread starting");

 WorkerController workerController = new WorkerController(workerNameArr);

 workerController.startThreads();

 Logger.log("Main thread started threads");

 }

}

A test run with ONE worker. I paused for about 8 seconds before allowing the controller to send signal.

1645298119830 Main thread starting
1645298119831 Work Controller: starting workers. Count = 1
1645298119831 Work Controller: started 1 workers.
1645298119831 Work Controller: pause before sending signal... Hit enter to Signal
1645298119831 Amy Begin run. About to enter synch block
1645298119832 Amy In synch block. About to wait for signal to start working
1645298128426 Work Controller sent signal and completed
1645298128426 Main thread started threads
1645298128426 Amy In synch block. About to return from wait. Now can do some work...
1645298128426 Amy Exited synch block and run()

Elapsed time: 1645298128426 – 1645298119832 = 8,594

We continue our example by adding more workers – total of three.

Main

Change this line

String workerNameArr[] = {"Amy"} ;

To this line

String workerNameArr[] = {"Amy", "Sammy", "Moe"} ;

A test run with THREE workers.

1645298429897 Main thread starting

1645298429898 Work Controller: starting workers. Count = 3

1645298429898 Work Controller: started 3 workers.

1645298429898 Work Controller: pause before sending signal... Hit enter to Signal

1645298429898 Sammy Begin run. About to enter synch block

1645298429898 Moe Begin run. About to enter synch block

1645298429898 Moe In synch block. About to wait for signal to start working

1645298429899 Sammy In synch block. About to wait for signal to start working

1645298429899 Amy In synch block. About to wait for signal to start working

1645298436665 Work Controller sent signal and completed

1645298436665 Main thread started threads

1645298436665 Moe In synch block. Returned from wait. Now can do some work...

1645298436665 Moe Exited synch block and run()

This did NOT work. All three workers entered a wait state. Our controller then sent out ONE notify which - in this

case – signaled Moe. Amy and Sammy are left waiting!

Solution: we can have our controller send three notifies OR we can use the synchronized mechanism notify all

method. We try the later.

Controller

Change this line

synchronized(workSignal) {

 workSignal.notify();

 }

To this line

 synchronized(workSignal) {

 workSignal.notifyAll();

 }

A successful test run with Three worker. The three threads all waited and were signaled.

1645299591636 Main thread starting
1645299591637 Work Controller: starting workers. Count = 3
1645299591637 Work Controller: started 3 workers.
1645299591637 Work Controller: pause before sending signal... Hit enter to Signal
1645299591637 Amy Begin run. About to enter synch block
1645299591638 Amy In synch block. About to wait for signal to start working
1645299591637 Sammy Begin run. About to enter synch block
1645299591638 Sammy In synch block. About to wait for signal to start working
1645299591638 Moe Begin run. About to enter synch block
1645299591638 Moe In synch block. About to wait for signal to start working

1645299599774 Work Controller sent signal and completed
1645299599774 Main thread started threads
1645299599774 Amy In synch block. Returned from wait. Now can do some work...
1645299599774 Amy Exited synch block and run()
1645299599774 Moe In synch block. Returned from wait. Now can do some work...
1645299599774 Moe Exited synch block and run()
1645299599774 Sammy In synch block. Returned from wait. Now can do some work...
1645299599774 Sammy Exited synch block and run()

The Mutex class

Constructors

Constructor and Description

Mutex()

Constructs a Mutex.

Method Summary

 Methods

Modifier and Type Method and Description

void lock()

Acquires ownership (locks the Mutex) of the Mutex.

The invoking Thread waits if another Thread currently

holds the lock

void unlock()

Releases ownership (unlocks the mutex) of the

mutex if the current owner is the invoking Thread

javascript:show(8);

Home Brewed Mutex
Earlier we examined the synchronize wait and notify mechanism. We now discuss a Mutex which uses this

mechanism. A mutex can be locked and unlocked. A lock indicates ownership of the mutex – an owner is always a

thread.

We start with an example mutex usage timeline. This should remind you of our family showering routine. In the

example we have a single instance of class Mutex. A mutex can be locked (i.e., obtained or owned) and can be

unlocked. A mutex owner is a thread. At a point of time, a mutex has one or zero owners.

• Thread A calls the lock method and obtains the mutex. A is the current ‘owner’ (A has the bathroom key)

• Thread B calls the lock method and waits.

• Thread C calls the lock method and waits.

• Thread A calls the unlock method to release the lock causing a signal to be generated. Note: we have

TWO waiting threads

• Thread B wakes and grabs the lock. C continues to wait.

• Thread B calls the unlock method to release the lock causing a signal to be generated.

• Thread C wakes up and grabs the lock.

• Thread C calls the unlock method to release the lock. The signal is generated and ignored as there are NO

waiting threads <- this is perfectly fine!

Version one. When a thread is waiting to obtain the Mutex the thread may be interrupted. Note, the ‘chance’ and

possibility of a thread being interrupted is up to you (the designers). Your code MUST explicitly interrupt a running

thread where the interrupt is issued from a second thread. I personally never interrupt!

package threadSynch;

public class Mutex {

 private Thread owner = null;

 private Object privateSignal;

 public Mutex() {

 privateSignal = new Object();

 }

 public void lock() throws InterruptedException {

 synchronized(privateSignal) {

 Thread requester = Thread.currentThread();

 if (owner == null) {

 owner = requester;

 return;

 }

 if (owner == requester) {

 return;

 }

 while (owner != requester) {

 try {

 privateSignal.wait();

 }

 catch (InterruptedException E) {

 throw E;

 }

 catch (IllegalMonitorStateException E) {

 }

 if (owner == null) { // Point A

 owner = requester; // obtain the lock

 }

 }

 }

 }

 public void unlock() {

 synchronized(privateSignal) {

 if (owner == Thread.currentThread()) {

 owner = null; // release lock

 try {

 privateSignal.notify();

 } catch (IllegalMonitorStateException e) {

 }

 }

 }

 }

}

Note re the above code. A change. The signaling thread (who unlocks) signals ONE waiting thread which will wake

up from its wait. Before signaling the signaler first assigns the owner member variable to null. The only way a

waiter could find a non-null owner upon waking up (see Point A) is if the wait caused an exception to be thrown!

Compare the following with version one (above) and version two below!

 if (owner == requester) {

 return;

 }

 while (owner != requester) { //

 try {

 privateSignal.wait();

 }

 catch (InterruptedException E) {

 throw E;

 }

 catch (IllegalMonitorStateException EE) {

 throw EE

 }

 if (owner == null) { // Point A

 owner = requester; // obtain the lock

 } // //

 } // // while loop

Note: Keeping the while loop and the check at Point A may be a clever idea!!!

Version two: ignores any interrupts while waiting!

package threadSynch;

public class Mutex {

 private Thread owner = null;

 private Object privateSignal;

 public Mutex() {

 privateSignal = new Object();

 }

 public void lock() throws InterruptedException {

 synchronized(privateSignal) {

 Thread requester = Thread.currentThread();

 if (owner == null) {

 owner = requester;

 return;

 }

 if (owner == requester) {

 return;

 }

 while (owner != requester) {

 try {

 privateSignal.wait();

 }

 catch (Exception E) {

 // ignore E

 }

 if (owner == null) { // Point A

 owner = requester; // obtain the lock

 }

 }

 }

 }

 public void unlock() {

 synchronized(privateSignal) {

 if (owner == Thread.currentThread()) {

 owner = null; // release lock

 try {

 privateSignal.notify();

 } catch (IllegalMonitorStateException E) {

 //

 }

 }

 }

 }

}

Notes re exception handling.

The lock method

In general, the java wait method throws two Exceptions

• Illegal Monitor State Exception − if the current thread is not the owner of the object's monitor.

• Interrupted Exception − if another thread has interrupted the current thread. The interrupted status of

the current thread is cleared when this exception is thrown.

Our Mutex logic first obtains ownership of the private Signal’s monitor via the synchronized mechanism. It also

checks that the invoking thread is indeed the mutex owner. So, the thread owns both the monitor and the mutex.

It ignores the Illegal Monitor State Exception. Version one throws (back to the caller) the Interrupted Exception.

Version two ignores the Interrupted Exception. The mutex is dumb – it does not (should not) know what to do

when interrupted.

The unlock

In general, the java notify method throws one Exception

• Illegal Monitor State Exception − if the current thread is not the owner of the object's monitor

Here again, our Mutex logic first obtains ownership of the private Signal’s monitor. It also checks that the invoking

thread is indeed the mutex owner. So, the thread owns both the monitor and the mutex. It ignores the Illegal

Monitor State Exception

If when unlocking, our Mutex logic detects that the invoking thread is NOT the mutex owner, it simple does

nothing! The Mutex could throw an exception to an uncooperative thread who tries to unlock a mutex that they do

not own; this implementation does NOT do this. If it did throw the exception the cooperative threads would also

need to check for the exception – an ‘unfair’ burden.

Version three: I change the lock method and rename it.

public boolean acquireLock() {

 synchronized(privateSignal) {

 Thread requester = Thread.currentThread();

 if (owner == null) {

 owner = requester;

 return;

 }

 if (owner == requester) {

 return;

 }

 while (owner != requester) {

 try {

 privateSignal.wait();

 }

 catch (Exception E) {

 return false;

 break;

 }

 if (owner == null) { // Point A

 owner = requester; // obtain the lock

 } //

 } // end loop

 }

 return true;

 }

Pardon the interruption

A note about Interrupts: If your design calls for using interrupts then go right ahead – I dare you! It can make you

code a bit tricky. One use is to atom bomb all your threads as part of an application shutdown. In any case, the

Mutex wait may be interrupted. We keep the Mutex as dumb as possible.

Warning: opinion alert --> this may be considered a subjective option! !!! → NEVER use the interrupt!

A Mutex class test
The shared resource. A bunch of workers will share the resource that performs a unit of work (A thru F).

package resources;

public class SharedResource {

 public void doIt() {

 System.out.println(Thread.currentThread().getId() + " A");

 System.out.println(Thread.currentThread().getId() + " B");

 System.out.println(Thread.currentThread().getId() + " C");

 double d = eatUpCPU();

 System.out.println(Thread.currentThread().getId() + " " + d);

 System.out.println(Thread.currentThread().getId() + " D");

 System.out.println(Thread.currentThread().getId() + " E");

 System.out.println(Thread.currentThread().getId() + " F");

 }

 private double eatUpCPU() {

 double result = 0;

 int big = 10000000;

 double arr[] = new double[big];

 for (int I = 0; I < big ; I ++) {

 double x = Math.sin(I+.002) * Math.log(I+.004);

 x = Math.cos(x+.009);

 arr[I] = x;

 }

 for (int I = 0; I < big ; I ++) {

 result = result + arr[I]/big;

 }

 return result;

 }

}

package workerThread;

import Log.Logger;

import resources.SharedResource;

public class Worker implements Runnable {

 private final SharedResource sharedResource;

 public Worker (SharedResource sharedResource) {

 this.sharedResource = sharedResource;

 }

 @Override

 public void run() {

 Logger.log("Worker " + Thread.currentThread().getId() + " Begin Work");

 try {

 sharedResource.doIt();

 } catch (Exception e) {

 Logger.log("Worker " + Thread.currentThread().getId()

 + " Caught work related exception: " + e.getMessage());

 }

 Logger.log("Worker " + Thread.currentThread().getId() + " Completed work");

 }

}

The controller creates one shared resource and provide it to the workers.

package workerThread;

import resources.SharedResource;

public class WorkerController {

 private Thread[] workerThread;

 private final int numWorkers=8;

 public WorkerController() {

 workerThread = new Thread[numWorkers];

 SharedResource sharedResource = new SharedResource();

 for (int I = 0; I < numWorkers; I++) {

 workerThread[I] = new Thread(new Worker(sharedResource));

 }

 }

 public void startThreads() {

 for (int I = 0; I < numWorkers; I++) {

 workerThread[I].start();

 }

 }

}

Main

package main;

import Log.Logger;

import workerThread.WorkerController;

public class Main {

 public static void main(String[] args) {

 Logger.log("Main thread starting");

 WorkerController controller = new WorkerController();

 controller.startThreads();

 Logger.log("Main thread started threads");

 }

}

We perform a run and notice the concurrency. The threads are concurrently sharing the shared resource!

Main thread starting
Main thread started threads
Worker 14 Begin Work
14 A
14 B
14 C
Worker 13 Begin Work
13 A
13 B
13 C
Worker 15 Begin Work
15 A
15 B
15 C
Worker 17 Begin Work
17 A
17 B
17 C

etcetera

Suppose we do not want the above concurrency. We now introduce a Mutex so that the shared resource work is

NOT concurrent; the threads execute the resource’s work one thread at a time. If the work produces an exception

we throw it back up.

package resources;

import threadSynch.Mutex;

public class SharedResource {

 private final Mutex mutex;

 public SharedResource (Mutex mutex){

 this.mutex = mutex;

 }

 public void doIt() throws Exception {

 Exception exception = null;

 boolean gotLock = true;

 try {

 mutex.lock();

 } catch (Exception e) {

 gotLock = false;

 }

 if (gotLock) {

 try {

 System.out.println(Thread.currentThread().getId() + " A");

 System.out.println(Thread.currentThread().getId() + " B");

 System.out.println(Thread.currentThread().getId() + " C");

 double d = eatUpCPU();

 System.out.println(Thread.currentThread().getId() + " " + d);

 System.out.println(Thread.currentThread().getId() + " D");

 System.out.println(Thread.currentThread().getId() + " E");

 System.out.println(Thread.currentThread().getId() + " F");

 } catch (Exception e) {

 exception = e;

 } finally {

 if (gotLock) {

 mutex.unlock();

 }

 }

 } else {

 System.out.println(Thread.currentThread().getId() +

 " cannot work. Failed to obtain Lock!!!");

 }

 if (exception != null) {

 throw exception;

 }

 }

 private double eatUpCPU() {

 double result = 0;

 int big = 10000000;

 double arr[] = new double[big];

 for (int I = 0; I < big ; I ++) {

 double x = Math.sin(I+.002) * Math.log(I+.004);

 x = Math.cos(x+.009);

 arr[I] = x;

 }

 for (int I = 0; I < big ; I ++) {

 result = result + arr[I]/big;

 }

 return result;

 }

}

The controller controls things!

• The controller provides the mutex for protecting the Shared Resource.

• The controller provides the Shared Resource for the workers.

We add the mutex creation to the controller and use it to construct our shared resource.

package workerThread;

import threadSynch.Mutex;

import resources.SharedResource;

public class WorkerController {

 private Thread[] workerThread;

 private final int numWorkers=8;

 public WorkerController() {

 workerThread = new Thread[numWorkers];

 Mutex mutex = new Mutex();

 SharedResource sharedResource = new SharedResource(mutex);

 for (int I = 0; I < numWorkers; I++) {

 workerThread[I] = new Thread(new Worker(sharedResource));

 }

 }

 public void startThreads() {

 for (int I = 0; I < numWorkers; I++) {

 workerThread[I].start();

 }

 }

}

Perform a run and notice the results of mutex. The threads do NOT concurrently execute the shared resource’

work. Looks like the mutex is doing its job.

Subset of output.

Worker 13 Begin Work
13 A
13 B
13 C
Worker 14 Begin Work
Worker 15 Begin Work
Worker 16 Begin Work
Worker 17 Begin Work
Worker 18 Begin Work
Worker 19 Begin Work
Worker 20 Begin Work
13 -0.05361478989054746
13 D
13 E
13 F
Worker 13 Completed work
14 A
14 B
14 C

etcetera

We look at a work-related exception handling case. The worker throws an exception in the middle of doing its

work!

We reduce the number of threads to three

public class WorkerController {

 private Thread[] workerThread;

 private final int numWorkers=3;

We add a dummy exception that is thrown in the middle of the work

public class SharedResource {

 …

 public void doIt() throws Exception {

 …

 System.out.println(Thread.currentThread().getId() + " C");

 double d = eatUpCPU();

 if (d < 0) {

 throw new Exception ("Dummy force exception!!!!");

 }

The work should stop just after successfully executing the line:

System.out.println(Thread.currentThread().getId() + " C");

Perform a run

Main thread starting
Main thread started threads
Worker 13 Begin Work
Worker 14 Begin Work
13 A
Worker 15 Begin Work
13 B
13 C
14 A
14 B
Worker 13 Caught work-related exception: Dummy force exception!!!!
14 C
Worker 13 Completed work
15 A
15 B
Worker 14 Caught work-related exception: Dummy force exception!!!!
Worker 14 Completed work
15 C
Worker 15 Caught work-related exception: Dummy force exception!!!!
Worker 15 Completed work

The Mutex wait
Our Mutex class forces users to wait forever when attempting to obtain the lock via the Mutex lock method. If an

uncooperative thread holds (is the owner of) the lock and does NOT release it then another thread(s) waits

forever! In the lock method we coded a ‘forever wait.’ – the wait method has no timeout argument.

try {

privateSignal.wait();

}

catch (Exception E) {

 throw (E);

}

We could include a time out on the wait. There are folks have the opinion that a thread should NEVER wait

forever! Warning: opinion alert --> I disagree!

Let say the Mutex constructor included a long TIMEOUT argument. The Mutex could make sure the TIMEOUT is

ZERO (wait forever) or greater than ZERO and use it in the wait. We will revisit this in a later chapter.

// In constructor validate the TIMEOUT input

If (TIMEOUT < 0) TIMEOUT = 0;

try {

 privateSignal.wait(TIMEOUT);

 // Was I signaled or did my wait timeout?

}

catch (Exception E) {

// I am a simple Mutex I do NOT know what to do! So I throw

 throw (E);

}

What is the Mutex logic do if there is a timeout? Does the Mutex even know a timeout occurred (versus being

signaled). Is it the Mutex’s responsibility to handle the timeout case? …or pass the situation up to the invoker?

Notice what our Mutex does after the wait completes. It checks (an extra check!) to see if it can become the

owner else it goes back to waiting – it is in a loop!! The Mutex cannot know if it woke up via signal or via a

timeout. So why use the timeout at all? Well! there are situations where your application logic needs to know if a

timeout occurred, i.e., where your application does NOT wait forever! Round and round we go!!

try {

 privateSignal.wait();

}

catch (Exception E) {

 throw (E);

}

if (owner == null) { // Point A

 owner = requester; // obtain the lock

}

If your design causes your system to wait forever (no signal is ever generated) AND this is a problem then maybe

you should re-design your system.

Professionally, I have never used a Mutex with a time out.

We will revisit the Mutex implementation in a later chapter and include the time-out feature! I promise!

Home Brewed Conditional Variable
Now we get a bit more sophisticated; we introduce a Conditional Variable.

Class CondVar

Constructors

Constructor and Description

CondVar()

Constructs a CondVar.

Method Summary

 Methods

Modifier and Type Method and Description

void wait(Mutex mutex)

Causes the invoking Thread to wait until a condition is satisfied, i.e.,

waits until the condition is true

void signal()

Signals a single waiting Thread that the condition has

been satisfied, i.e., that the condition is true

The conditional variable implements two public interfaces

package threadSynch;

 public interface CondVarWaiter {

 public void wait(Mutex mutex);

}

package threadSynch;

public interface CondVarSignaler {

 public void signal();

}

javascript:show(8);

This is another class (like our Mutex) where the public interface does NOT tell the whole story. The proper use of a

conditional variable depends on the software engineer (you!) following certain design conventions. We discuss the

conventions in the following pseudo code example.

Notice that the conditional variable’s wait method has an argument of type Mutex. This is one advantage of

making a lock into its own class – our Mutex class.

Conditional variable conventions.

• We have two groups of threads: signalers and waiters. There are one or more threads in a group.

• All the threads share

1. a single resource

2. a mutex

3. a conditional variable.

• The mutex is cooperatively used to protect the shared resource - like our bathroom example.

• A waiter MUST provide a reference to the mutex when invoking the condition variable wait method. The

mutex MUST be locked before invoking the wait method.

A pseudo code example
The above two interfaces and the list of conventions is enough to provide an example. We will code up the

conditional variable after the example – I promise!

We consider seven classes

1. Work. This represents work that needs to be done

2. A single Work Store. Stores work objects. The class is NOT thread safe. The store has three methods:

• public Work getWorkItem()

• public void addWorkItem(Work work)

• public Boolean isEmpty()

3. A single Mutex to protect the store.

4. A single Conditional Variable. This implements our two interfaces

5. Producer. A thread. This creates Work items and places them in the Work Store

6. Consumer. A Thread. This grabs (one at a time) a Work items from the Work Store and performs the work.

7. Controller. This ties everything together. It MUST follow the conditional variable conventions.

The controller logic

The controller has three private members

1. private final Work Store

2. private final mutex. This protects the store which is not thread-safe

3. private final ConditionalVar condVar

The controller has two methods

1. Method add work used by producer threads. The method add/inserts a work instance to the work store

via the store’s add work item method.

2. Method get work used by consumer threads. The method grabs a work item from the work store via the

store’s get work item method.

This logic is simple. The controller follows the convention: use the mutex to protect our shared resource – the

store that is shared by N threads.

For threads who produce work – producers create work instances and the calls the controller’s add work method;

the work is added to the store. After a work item is safely in the store we signal any waiting consumers.

// Controller method to add work

public void addWork (Work work) {

 lock the mutex;

 store.addWortkItem(work);

 unlock the mutex

 condVar.signal();

}

The mutex protects the store. The purpose of the signal is to wake up ONE thread that is waiting for work to do.

One or zero threads gets wake up. If there are NO waiting threads the signal is ignored. A thread (a Consumer) is

waiting for work when it invokes the controller get work method (just below) AND the store happens to be empty

at the time!

Consumers look for work; if there is no work they wait until there is! It uses the controller’s get Work method.

// Controller method to get work

public void getWork {

 lock the mutex;

 while (store.isEmpty(){

 condVar.wait(mutex)

 }

 Work work = store. getWorkItem();

 unlock the mutex

 return work

}

This is where it gets a bit tricky. As my third-grade teacher would say “so! pay attention”

The convention: The controller locks the mutex when invoking any of the three store methods - is empty, get

work item and add work Item. BUT!!! Notice that we pass a reference to our locked mutex to the conditional

variable wait method. Looks dangerous BUT this is ‘by design’; the controller is following the conditional variable

conventions. The point is that the conditional variable wait method will eventually release the lock to allow

signalers. It will release the lock when the ‘time is right.’ It regains the lock for the invoker before returning.

The conditional variable’s wait and signal pseudocode logic without exception handling follows. It has two

methods (see the two interfaces above). Here they are again.

1. public void wait(Mutex mutex)

2. public void signal()

Wait

The wait method expects the mutex to be locked (conditional variable convention). The wait method unlocks the

mutex, but first obtains a lock on the second mutex – the conditional variable’s private lock. The mutex is

unlocked allowing other threads access to the store. These other threads can be producers and/or consumers.

Unlocking the mutex is a MUST since the consumer invoking the wait method (via the controller’s get work

method) has encountered an empty store – it is waiting for a producer to add to the store; we allow both

producers and consumers access to the store during the wait. Finally, the wait method restores the lock on the

original mutex on behalf of the invoking consumer thread. You may want to revisit the controller methods above.

Note: re-ordering the wait method and unlocking the mutex before getting the private lock would be a design

flaw! We discuss this a bit later.

Signal

This conditional variable method simply notifies (signals) via the conditional variables private lock. Who gets the

signal ? One waiting consumer thread OR no thread – of course! Producers should always send a signal after

adding work to the store.

The Conditional Variable implementation
As promised the conditional variable code. Here we use the Mutex version that does NOT throw Interrupted

Exceptions

package threadSynch;

public class CondVar implements CondVarWaiter,CondVarSignaler {

 private final Object myPrivateLock;

 public CondVar() {

 myPrivateLock = new Object();

 }

 public void wait(Mutex mutex) {

 // Convention: we expect the Mutex to

 // be currently locked, i,e, held by the

 // current (invoking) thread

 synchronized(myPrivateLock) {

 mutex.unlock();

 try {

 myPrivateLock.wait();

 }

 catch (Exception E) {

 //

 }

 }

 mutex.unlock();

 }

 public void signal() {

 synchronized(myPrivateLock) {

 myPrivateLock.notify();

 }

 }

}

Producer and consumer example timeline

1. The producers invoke the controller add work method populating the store. No consumers are running.

2. The above producers continue adding work and a consumer starts.

At step (1) the producers compete for access to the store. The controller mutex protects the store and work items

are safely added.

After step (2) the consumer – at a point – locks the mutex. The store is NOT empty, and the consumer removes

one work item and unlocks the mutex.

3. The above producers continue adding work and a second consumer thread starts

After step (3) a consumer at a point in time locks the mutex. The store is NOT empty, and the consumer gets one

work item and unlocks the mutex. If the consumers are faster (I doubt it!) then the producers, the store may

become periodically empty – causing consumers to wait.

4. The above producers strop adding work and the consumer threads continue

After step (4) a consumer at a point in time locks the mutex. The store is NOT empty, and a consumers gets one

work item at a time and unlocks the mutex allowing other consumers access to work. Eventually the store gets

emptied, and all consumers get into the condition variable’s wait. Nothing is happening.

5. A producer creates ONE work item.

The producer has access to the store since the conditional variable wait method always releases the controller

mutex. So, the store NOW has one item. The producer calls (via the controller) the conditional variable signal. One

waiting consumer wakes up and consumes the work item leaving the store empty again. The other consumers

continue to wait

6. Producers all create work items.

The controller mutex keeps the store safe – one reader xor writer at a time. In the meantime, Java guarantees that

conditional variable private lock synch, wait notify mechanism “works” and all is fine!

Analysis. The controller and the conditional variable work together cooperatively. One advantage of our Mutex

class is that fact that it is a class! We can create (new) a Mutex instance and pass it around to various classes. Our

controller creates the mutex and locks and unlocks it. It also sends the mutex reference to the conditional

variable’s wait method; it must first lock the mutex by convention.

The conditional variable logic involves two locks - the mutex and the conditional variable’s private monitor lock.

You may ask why the controller does not keep the mutex private and unlock it before calling the conditional

variable wait method! The reason is that in the sequence of consumer events the private monitor lock MUST be

obtained before the mutex lock is released – thread safety-ness demands it! In the wait method we have:

 …

 synchronized(myPrivateLock) { // get monitorlock

 mutex.unlock(); // release mutex lock

 myPrivateLock.wait();

 }

 mutex.lock(); // re-obtain the mutex lock

 …

Timelines.

When attempting to visualize multiple concurrent threads it is tempting to do something like this – here for three

threads(A, B and C) and two available CPUs. Reading the table - top to bottom - represents time – row N occurs

before row N+1

CPU One CPU two

Thread A Thread B

Task a1 Task b1

Task a2 Task b2

Task a3 Task b3

etcetera etcetera

The above approach is too simplistic to be a valuable visual aid except for the simplest cases.. It assumes that the

tasks ALL take the same amount of time – NO way!. Also , the above timeline does not consider context switches

We try again

 CPU One CPU two

 Thread A Thread B

 Task a1 Task b1

 Task a2 Task b2
 Task a3

CPU One Context switch here…

 Thread C

 Task c1 Task b3

 etc. etc.

Here, Task b2 takes more time to complete compared to Task a2. Also, after Thread A completes Task a3, Thread C

takes over CPU One!

The timeline gets more complicated when threads share synchronized resources – like the shared Mutex in our

consumer/producer example! Say a consumer has the mutex locked (owns it) and a second thread is waiting to

obtain the mutex – in this case, the second thread is a prime target to lose the CPU - especially if a third thread is

ready to take over the CPU!

It gets more complicated still as our consumer/produce example has TWO shared ‘locks’

1. The controller’s mutex

2. The conditional variable’s private lock (monitor)

Example scenario: The store is initially empty. A consumer accesses these two locks in the following temporal

order. Remember, locking may necessitate waiting.

A consumer thread timeline

Lock Access Java class Notes and actions

Lock mutex Controller Need access to store. Discovers that the store is empty

 Controller Invoke Cond var wait method

Lock monitor Cond var Enter monitor synch block

Unlock mutex Cond var The store is unlocked

Unlock monitor Cond var Wait for a signal – this unlocks monitor - allows a producer to access the
monitor

Lock monitor Cond var Wait ends. Got a signal - generated by a producer who added a work item
to store and then signaled. The producer found both locks UNLOCKED

Lock the mutex Cond var The store is locked

Unlock monitor Cond var End of monitor synch block. Cond var wait method about to return

 Controller Get the above work item from the store

Unlock Mutex Controller The store is unlocked

Another

 Lock Access Java class Notes and actions

1 Lock mutex Controller Need access to store. Discovers that the store is empty

2 Controller Invoke Cond var wait method

3 Lock monitor Cond var Enter monitor synch block

4 Unlock mutex Cond var The store is unlocked

5 Producer adds a work item to store. The producer found one
lock (the mutex) UNLOCKED – but cannot signal yet since
monitor is locked

6 Unlock monitor Cond var Wait for a signal – this unlocks monitor - allows a producer to
access the monitor

7 Lock monitor Cond var Wait ends. Got a signal - generated by a producer who added a
work item to store and then signaled. The producer was
waiting on monitor since step 5

8 Lock the mutex Cond var The store is locked

9 Unlock monitor Cond var End of monitor synch block. Cond var wait method about to
return

10 Controller Get the above work item from the store

11 Unlock Mutex Controller The store is unlocked

A simple example

Here we have one consumer thread and one producer thread.

Two work items will be processed. The two work items occur 20 minutes apart (things are slow!).

The first work item enters the system. The consumer and producer are in a race to get the lock on the store. The

producer wants to add the work item to the store and the consumer wants to check the store for work. They race

for the mutex.

Case one producer wins the race.

The producer has the mutex. The consumer waits for the mutex.

The producer adds the work item in the store and then releases the mutex lock. This allows the consumer access to

the mutex lock.

The producer signals.

The consumer locks the mutex and sees one item in the store. It does NOT invoke the conditional variable’s wait -

the above signal is ignored which is OK!)

The consumer grabs the work item unlocks the mutex and processes it.

The consumer grabs the mutex and discovers an empty store. It invokes the conditional variable wait and waits for

20 minutes. Both mutex and monitor are unlocked

After 20 minutes the producer gets the mutex adds the second work item to the store unlocks the mutex and

signals!

The consumer wakes up and…

Case two: consumer wins the race.

The consumer has the mutex. The producer waits for the mutex.

The consumer discovers an empty store and invokes the conditional variable wait. The mutex is still locked.

The conditional variables wait method takes over!

The private monitor is locked

The mutex is unlocked.

The consumer enters the monitors wait (this releases the monitor lock) – Both locks are no unlocked

When the mutex was unlocked this allowed the producer to grab the mutex and to add the work item to the store

and unlocks the mutex. The producer is the able to signal since the monitor is also unlocked.

 All locks are now unlocked.

The producer signal wakes up the consumer and it proceeds to process the work item.

The consumer proceeds and waits on the empty store.

A second work item arrives in 20 minutes with the consumer waiting. All locks are unlocked. The producer can

proceed to add to the store and signal.

We plant a BUG

We now introduce an error in our logic. We switch the wait methods locking/unlocking order in the conditional

variable’s wait method.

public class CondVar implements CondVarWaiter,CondVarSignaler {

 private final Object myPrivateLock;

 public CondVar() {

 myPrivateLock = new Object();

 }

 public void wait(Mutex mutex) throws InterruptedException {

 mutex.unlock();

 /// Interval XXX – our logic is in jeopardy here

 synchronized(myPrivateLock) { // lock the monitor

 mutex.unlock();

 try {

 myPrivateLock.wait();

 }

 catch (Exception E) {

 }

 }

 try {

 mutex.lock();

 }

 catch (InterruptedException E) {

 throw E;

 }

 }

 public void signal() {

 synchronized(myPrivateLock) {

 myPrivateLock.notify();

 }

 }

}

Notice the window labeled Interval XXX - our logic fails here. The interval is deadly! Once the mutex is unlocked

both locks are unlocked in the interval. A producer can grab the lock and proceed to signal. The jeopardy!

This timeline illustrates the issue. Three threads: a consumer, a produce and thread XX

CPU A CPU B

Consumer has CPU Producer has CPU

Lock mutex

Discover empty store Waiting for mutex

Unlock mutex
Both locks are unlocked

Consumer is in Interval XXX
Thread XX takes CPU

Lock mutex

Thread XX is working Adds work item to store.
Store now has two items.

Unlock mutex

Lock monitor

Thread XX is working Signal (A) -- OH NO! there is NO
waiter to get the signal

Consumer takes CPU Unlocks monitor

Invoke cond var wait method

Lock monitor

Wait for signal (unlocks monitor)

Disaster !! 20 minutes pass with
no activity!

 Finally, work arrives!!!

 Locks mutex

 Adds work item to store.
Store now has two items

 Locks mutex

 Locks monitor

 Signal (B)

 Unlocks monitor

Wait is over!!!!! Via signal (B)
The consumer waited 20 minutes

Make sure that you are convinced that the above issue CANNOT occur with the meticulously designed controller

and conditional variable!

BUG Note

We introduce the above BUG as an example to help understand our locking logic. We had to concoct an elaborate

timeline to demonstrate the effects of the bug because the BIG would occur (i.e., manifest itself) very infrequently

in the ‘real world’ – the locking/unlocking logic would seldom cause a problem.

Is a bug (red) that occurs (manifests itself) very infrequently a ‘better bug’ than a bug (green) that manifests itself

frequently?

Question: If you HAD to HAVE a bug which one would you prefer!? <- That is a joke!

The above question is a bit of a conundrum.

I prefer the green bug (the one that happens frequently!). Because of its frequency the bug will hopefully be

detected in software testing, and it will be fixed! – there will NO bug in software release! The red bug may go

undetected in testing, get released into production and not manifest itself until it does!!! Ouch!

A Safe FIFO
Heads up: you should NOT be designing and coding classes like our Safe Q. Instead examine and use

java.util.concurrent (ReentrantLock, BlockingQueue, . . .).

Here, as a learning exercise, we roll our own mutex, condition variable and safe Q as a leaning exercise. Using the

built-in java provided classes is the only way to program in the real world in your ‘professional programmer’ role.

Here you are preparing for that role by ‘rolling our own.’

Class SafeQ<T>

Constructors

Constructor and Description

SafeQ()

Constructs a SafeQ

Method Summary

 Public Methods

Modifier and Type Method and Description

void push(T t)

Adds the item t to the end of the underlying FIFO

void priorityPush (T t)

Adds the item t to the front of the underlying FIFO.

T popWait()

Removes and returns the first item in the underlying FIFO. If
the FIFO is empty the invoking Thread waits.

T pop ()

Removes and returns the first item in the underlying FIFO. If
the FIFO is empty NULL is returned

boolean isEmpty()

Returns true if the underlying FIFO is empty else returns false.

int size ()

Returns the size of the underlying FIFO.

javascript:show(8);

void clear()

Clears the underlying FIFO.

int backLog()

Returns the size of the underlying FIFO. Same as size() method.

T peek()

Returns (does NOT remove) the first item in the underlying
FIFO. If the FIFO is empty NULL is returned

Back to our consumer/producer example
In our previous consumer/producer example the Store was not thread safe. Consumers and producers shared a

stateless controller that took care of our safety concerns by using a mutex and conditional variable. Consumers

invoked the get work method. Producers invoked the add work method.

// Controller method to add work

public void addWork (Work work) {

 lock the mutex;

 store.addWortkItem(work);

 unlock the mutex

 condVar.signal();

}

// Controller method to get work

public void getWork {

 lock the mutex;

 while (store.isEmpty(){

 condVar.wait(mutex)

 }

 Work work = store. getWorkItem();

 unlock the mutex

 return work

}

We remove our controller and replace the Store with a Safe Q <Work>. Consumers and producers share the safe

Q. Both consumer and producer deal directly with a single shared Safe Q.

The producer now invokes the Safe Q push(work) method.

The consumer now invokes the Safe Q pop Wait() method.

Safe Q implementation

package threadSynch;

import java.util.LinkedList;

public class SafeQ<T> {

 private final Mutex mutex;

 private final CondVar condVar;

 private LinkedList<T> list;

 public SafeQ() {

 mutex = new Mutex();

 condVar = new CondVar();

 list = new LinkedList<T>();

 }

 public void push(T t) {

 mySafePush(t, false);

 }

 public void priorityPush(T t) {

 mySafePush(t, true);

 }

 private void mySafePush(T t, boolean priorityPush) {

 mutex.lock();

 if (priorityPush) {

 list.addFirst(t);

 } else {

 list.addLast(t);

 }

 mutex.unlock();

 condVar.signal();

 }

 public T popWait() {

 mutex.lock();

 while (list.isEmpty()) {

 condVar.wait(mutex);

 }

 T t = list.removeFirst();

 mutex.unlock();

 return t;

 }

 public T pop() {

 T t = null;

 mutex.lock();

 if (!list.isEmpty()) {

 t = list.removeFirst();

 }

 mutex.unlock();

 return t;

 }

 public boolean isEmpty() throws InterruptedException {

 mutex.lock();

 boolean isMT = list.isEmpty();

 mutex.unlock();

 return isMT;

 }

 public int size() throws InterruptedException {

 mutex.lock();

 int size = list.size();

 mutex.unlock();

 return size;

 }

 public int backLog() throws InterruptedException {

 return this.size();

 }

 public T peek() {

 mutex.lock();

 T t = list.peekFirst();

 mutex.unlock();

 return t;

 }

 public void clear() {

 mutex.lock();

 list.clear();

 mutex.unlock();

 }

}

We use a primitive Java list as our FIFO queue(our private Q) which is NOT thread safe. We repeatedly use the

private mutex to protect the list.

The two push methods are the signalers – a signal announces that an item was just added to the Q.

The pop wait method is the waiter. It will wait to be signaled while the Q is empty.

The functionality of the various methods should be obvious!

We provide an example in the following chapter.

Thread returns from run: a logger thread
A thread implements runnable – a simple concept. Simple is good! When the run method returns the threads work

is done; it cannot be restarted.

We can keep a thread’s run method going and going and going by introducing a loop inside the run method. Our

singleton logger thread will do just that.

You should never have to write your own logger – like we are doing here. There are plenty of “off the self’

provided Loggers around!. This is a leaning exercise to examine how a Safe Q can be used and how to keep a

thread’s run method active for a “long time”!

We want the logging thread

1. To be a singleton

2. To run in a single thread – its ‘own’ thread

3. To run all the time in the background

4. To be accessible to ALL threads

5. To be tread-safe

6. To log all log entries to a single “location” – a file, a DB, a console etcetera

7. To be kind to users – i.e., FAST. We do not want logging to slow down our application threads. We want to

minimize the case where Thread A logging blocks Thread B logging. Also, a thread should NOT have to

wait while “location” related I/O is taking place. The always slow I/O should happen in the single thread

8. To hide its implementation details from other Threads.

We jump right into the code!

A log entry. An entry consists of a time stamp, one of five categories and text. Notice that nothing here is public.

The test can be a simple string or a list of strings. This all stays inside the Log package

package Log;

import java.util.ArrayList;

import java.util.List;

class LogEntry {

 enum Category {

 ERROR, WARNING, INFO, MISC, SHUTDOWN;

 }

 private List<String> textLines;

 private Category category;

 private long timeStamp;

 List<String> getTextLines() {

 return textLines;

 }

 Category getCategory() {

 return category;

 }

 long getTimeStamp() {

 return timeStamp;

 }

 LogEntry(Category category, String text){

 textLines = new ArrayList<String>();

 textLines.add(text);

 commonInit(category);

 }

 LogEntry(Category category, List<String> textLines){

 this.textLines = textLines;

 commonInit(category);

 }

 private void commonInit(Category category) {

 timeStamp = System.currentTimeMillis();

 if (category != null) {

 this.category = category;

 } else {

 this.category = Category.MISC;

 }

 }

 boolean isShutdownRequest() {

 return this.category == Category.SHUTDOWN;

 }

 static LogEntry buildShutdownRequest() {

 return new LogEntry(Category.SHUTDOWN, "Shut down requested");

 }

}

Notice what may seem ODD – we include a shutdown related log entry. We will use this to log the shutdown

message AND to signal the logging thread to stop. When the shutdown is first requested, the logging thread will

first process backlogged log entries then log the shutdown entry and then shutdown (return from run method).

We need the functionality to persist our entries to a ‘location.”

package Log;

interface LogEntryPersister {

 public void persist(LogEntry logEntry);

}

For our example we log to the console (our log’s “location). Typically, this would be a file and the logger would

require external props for the file name, location, etc. This suffices for our learning example.

package Log;

public class LogEntryConsolePersister implements LogEntryPersister{

 LogEntryConsolePersister(){

 }

 @Override

 public void persist(LogEntry logEntry) {

 for (String text : logEntry.getTextLines()) {

 System.out.println(""+ logEntry.getTimeStamp() +

 ": " + logEntry.getCategory().name() + " " +text);

 }

 }

}

Finally, our logger thread. It exposes these public methods to its fellow threads.

• public void logError(String text)

• public void logInfo(String text)

• public void logWarning(String text)

• public void logError(List<String> text)

• public void logInfo(List<String> text)

• public void logWarning(List<String> text)

• public void shutDown()

The implementation of our singleton Logger

package Log;

import java.util.List;

import threadSynch.SafeQ;

public class Logger {

 public static Logger logger;

 static {

 logger = new Logger();

 logger.start();

 }

 private final SafeQ<LogEntry> sharedLogEntryQ;

 private final Thread myThread;

 private Logger() {

 LogEntryPersister logItemPersister = new LogEntryConsolePersister();

 sharedLogEntryQ = new SafeQ<LogEntry>();

 LoggerRunnable myRunnable =

 new LoggerRunnable(sharedLogEntryQ, logItemPersister);

 myThread = new Thread(myRunnable);

 }

 private void start() {

 myThread.start();

 }

 public void logError(String text) {

 LogEntry entry = new LogEntry(LogEntry.Category.ERROR, text);

 sharedLogEntryQ.push(entry);

 }

 public void logWarning(String text) {

 LogEntry entry = new LogEntry(LogEntry.Category.WARNING, text);

 sharedLogEntryQ.push(entry);

 }

 public void logInfo(String text) {

 LogEntry entry = new LogEntry(LogEntry.Category.INFO, text);

 sharedLogEntryQ.push(entry);

 }

 public void logError(List<String> text) {

 LogEntry entry = new LogEntry(LogEntry.Category.ERROR, text);

 sharedLogEntryQ.push(entry);

 }

 public void logWarning(List<String> text) {

 LogEntry entry = new LogEntry(LogEntry.Category.WARNING, text);

 sharedLogEntryQ.push(entry);

 }

 public void logInfo(List<String> text) {

 LogEntry entry = new LogEntry(LogEntry.Category.INFO, text);

 sharedLogEntryQ.push(entry);

 }

 public void shutDown() {

 sharedLogEntryQ.push(LogEntry.buildShutdownRequest());

 }

 }

Notice the private constructor. In here we create a persister and a safe Q which we provide for our runnable –

which follows.

package Log;

import threadSynch.SafeQ;

class LoggerRunnable implements Runnable {

 private final SafeQ<LogEntry> logEntryQ;

 private final LogEntryPersister persister;

 LoggerRunnable(SafeQ<LogEntry> logEntryQ, LogEntryPersister persister){

 this.logEntryQ = logEntryQ;

 this.persister = persister;

 }

 @Override

 public void run() {

 LogEntry entry;

 boolean shutdownRequested = false;

 while (!shutdownRequested) {

 entry = logEntryQ.popWait();

 persister.persist(entry);

 shutdownRequested = entry.isShutdownRequest();

 }

 }

}

The (see above) Logger class provides a user the mechanism for shutting down the logging thread via

public void shutDown() {

 sharedLogEntryQ.push(LogEntry.buildShutdownRequest());

}

We could have coded the following – but we did not!

public void shutDown() {

 sharedLogEntryQ.priorityPush(LogEntry.buildShutdownRequest());

}

 Notice how the run method handles the shutdown entry.

A silly test. A worker thread that logs.

package workerThread;

import java.util.ArrayList;

import java.util.List;

import Log.Logger;

import simulation.CpuHog;

public class LoggingWorkerBee implements Runnable {

 private final Logger myLogger;

 private final List<String> myStats;

 public LoggingWorkerBee () {

 myLogger = Logger.logger;

 myStats = new ArrayList<String>();

 }

 @Override

 public void run() {

 long myID = Thread.currentThread().getId();

 myLogger.logInfo ("Worker BEE Thread: " + myID + " Starting up");

 myLogger.logError("Worker BEE Thread: " + myID + " logged an error message");

 myStats.add("Worker BEE Thread: " + myID + " Stats");

 CpuHog.doIt();

 myStats.add(" Number of sales: 1299");

 myStats.add(" Number of refunds: 23");

 myStats.add(" Number of Frauds detected: 2");

 myStats.add(" Average sales amount $239.89");

 myLogger.logInfo(myStats);

 myLogger.logError("Worker BEE Thread: " + myID + " logged an error message");

 myLogger.logError("Worker BEE Thread: " + myID + " logged a warning message");

 myLogger.logInfo ("Worker BEE Thread: " + myID + " returning from run");

 }

}

The logger is statically available in our constructor. We use our CPU Hog to simulate the worker doing actual work!

Main will be our test driver.

package main;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import Log.Logger;

import workerThread.LoggingWorker;

import workerThread.LoggingWorkerBee;

public class Main {

 public static void main(String[] args) {

 Logger myLogger = Logger.logger;

 myLogger.logInfo("Main thread starting");

 List<Thread> threads = new ArrayList<Thread>();

 int I = 0;

 while (I < 9) {

 Thread t = new Thread(new LoggingWorkerBee());

 threads.add(t);

 I++;

 }

 for (Thread t: threads) {

 t.start();

 }

 myLogger.logInfo("Main thread started threads");

 System.out.println("We stall before shutting down...Hit key to exit main");

 try {

 System.in.read();

 } catch (IOException e) {

 }

 myLogger.logInfo("Main thread stopping logger and exiting");

 myLogger.shutDown();

 }

}

A test run

1646776294987: INFO Main thread starting

1646776294988: INFO Main thread started threads

We stall before shutting down...Hit key to exit main

1646776294989: INFO Worker BEE Thread: 15 Starting up

1646776294989: INFO Worker BEE Thread: 14 Starting up

1646776294989: ERROR Worker BEE Thread: 14 logged an error message

1646776294989: ERROR Worker BEE Thread: 15 logged an error message

1646776294989: INFO Worker BEE Thread: 16 Starting up

1646776294989: ERROR Worker BEE Thread: 16 logged an error message

1646776294989: INFO Worker BEE Thread: 17 Starting up

1646776294990: ERROR Worker BEE Thread: 17 logged an error message

1646776294990: INFO Worker BEE Thread: 18 Starting up

1646776294990: INFO Thread: 14 CPU hog Start

1646776294990: INFO Thread: 16 CPU hog Start

1646776294990: INFO Thread: 15 CPU hog Start

1646776294994: INFO Thread: 17 CPU hog Start

1646776295027: ERROR Worker BEE Thread: 18 logged an error message

1646776295027: INFO Worker BEE Thread: 19 Starting up

etcetera

1646776298077: INFO Worker BEE Thread: 22 returning from run

1646776303652: INFO Main thread stopping logger and exiting

1646776303652: SHUTDOWN Shut down requested

Notice that the threads ran concurrently. Also note that the stats related entries for a thread are always adjacent

to each other in the log.

Trick question. Suppose we increased the stats text lines – say to 200 lines. Would the change adversely affect

other threads who are concurrently logging? Answer: NO, it would have ZERO effect. A logging thread deposits a

reference to a log entry in the sage Q and continues – all the logging work is done in our logger runnable.

Mutex with a timeout

An example synchronized wait time out

private final Object privateSignal = new Object();

public void waitXXX (long timeOutMilli) {

if (timeOutMilli < 0) {

 timeOutMilli = 0; // avoid IllegalArgumentException

}

long timeOutNano = 1000000*timeOutMilli;

long startWaitTimeNano = System.nanoTime();

try {

 privateSignal.wait(timeOutMilli);

}

catch (Exception E) {

}

long elapsedWaitTimeNano = System.nanoTime() - startWaitTimeNano;

boolean timedOut = timeOutMilli > 0 && elapsedWaitTimeNano >= timeOutNano;

// etc…

}

The Mutex implementation

Our Mutex with a Timeout follows.

package threadSynch;

public class TimedMutex {

 private Thread owner = null;

 private Object privateSignal;

 private final long timeOutMilli; // ZERO implies NO timeout

 public enum AcquireLockStatus {ACQUIRED, TIME_OUT, INTERRUPTED};

 public TimedMutex(long timeOutMilli) {

 privateSignal = new Object();

 this.timeOutMilli = Math.abs(timeOutMilli); // make sure this is valid

 }

 public long getTimeout() {

 return this.timeOutMilli;

 }

 public AcquireLockStatus acquireLock() {

 AcquireLockStatus lockStatus = null;

 synchronized(privateSignal) {

 Thread requester = Thread.currentThread();

 if (owner == null) {

 owner = requester;

 lockStatus = AcquireLockStatus.ACQUIRED;

 } else if (owner == requester) {

 lockStatus = AcquireLockStatus.ACQUIRED;

 }

 if (lockStatus == null) {

 try {

 privateSignal.wait(timeOutMilli);

 }

 catch (InterruptedException IE) {

 lockStatus = AcquireLockStatus.INTERRUPTED;

 }

 catch (IllegalArgumentException IAE) {

 // we checked - our timeOutMilli is legal

 }

 catch (IllegalMonitorStateException IMSE) {

 // we are in a synch block

 }

 }

 if (lockStatus == null) {

 if (owner == null) {

 owner = requester; // We were signaled

 lockStatus = AcquireLockStatus.ACQUIRED;

 } else {

 lockStatus = AcquireLockStatus.TIME_OUT;

 // i.e., we woke up but we were NOT signaled

 // AND no wait exceptions occurred!

 }

 }

 }

 return lockStatus;

 }

 public void unlock() {

 synchronized(privateSignal) {

 if (owner == Thread.currentThread()) {

 owner = null; // release lock

 try {

 privateSignal.notify();

 } catch (IllegalMonitorStateException IMSE) {

 // // we are in a synch block

 }

 }

 }

 }

}

Notes:

We did not have to perform any fancy timeout detection arithmetic! When we wake up (return from) wait we

check if the mutex owner is null – if so we were notified and we acquire the lock. If the owner is NOT null we

timeout out.

Scenarios where we return from wait. Look at the code an convince yourself that we ‘covered’ the scenarios.

1. The wait was interrupted

2. The wait timeout argument was invalid

3. An Illegal Monitor State Exception was thrown

4. We timed out

5. We did not time out and we were signaled

Test Example

Worker threads share this.

package resources;

import Log.Logger;

import threadSynch.TimedMutex;

import threadSynch.TimedMutex.AcquireLockStatus;

public class SharedResource {

 private final TimedMutex mutex;

 public SharedResource (TimedMutex mutex){

 this.mutex = mutex;

 }

 public void doIt() {

 Logger.log("T:"+ Thread.currentThread().getId() + " about to acquire lock...");

 AcquireLockStatus lockStatus = mutex.acquireLock();

 if (lockStatus == TimedMutex.AcquireLockStatus.ACQUIRED) {

 Logger.log("T:"+ Thread.currentThread().getId() +

 " 1 - GOT the LOCK Start work");

 Logger.log("T:"+ Thread.currentThread().getId() + " 2 ");

 Logger.log("T:"+ Thread.currentThread().getId() + " 3 ");

 double d = eatUpCPU();

 Logger.log("T:"+ Thread.currentThread().getId() + " 4 " + d);

 Logger.log("T:"+ Thread.currentThread().getId() + " 5 ");

 Logger.log("T:"+ Thread.currentThread().getId() + " 6 ");

 Logger.log("T:"+ Thread.currentThread().getId() + " 7 Finished work");

 mutex.unlock();

 } else{

 Logger.log("T:"+ Thread.currentThread().getId() +

 " Failed to acquire lock: " + lockStatus.name());

 }

 }

 private double eatUpCPU() {

 double result = 0;

 int big = 10000000;

 double arr[] = new double[big];

 for (int I = 0; I < big ; I ++) {

 double x = Math.sin(I+.002) * Math.log(I+.004);

 x = Math.cos(x+.009);

 arr[I] = x;

 }

 for (int I = 0; I < big ; I ++) {

 result = result + arr[I]/big;

 }

 return result;

 }

}

A worker

package workerThread;

import resources.SharedResource;

public class Worker implements Runnable {

 //private final static Object lock = new Object();

 private final SharedResource sharedResource;

 public Worker (SharedResource sharedResource) {

 this.sharedResource = sharedResource;

 }

 @Override

 public void run() {

 sharedResource.doIt();

 }

}

Worker controller

package workerThread;

import resources.SharedResource;

import threadSynch.TimedMutex;

public class WorkerController {

 private Thread[] workerThread;

 private final int numWorkers=8;

 public WorkerController() {

 workerThread = new Thread[numWorkers];

 //TimedMutex mutex = new TimedMutex(5000);

 //TimedMutex mutex = new TimedMutex(7000);

 TimedMutex mutex = new TimedMutex(2000);

 SharedResource sharedResource = new SharedResource(mutex);

 for (int I = 0; I < numWorkers; I++) {

 workerThread[I] = new Thread(new Worker(sharedResource));

 }

 }

 public void startThreads() {

 for (int I = 0; I < numWorkers; I++) {

 workerThread[I].start();

 }

 }

}

Perform various runs and change the timeout in the controller to various values. Change the controller and make

the timeout value a function of the number of worker threads!

Main

package main;

import Log.Logger;

import workerThread.WorkerController;

public class Main {

 public static void main(String[] args) {

 Logger.log("Main thread starting");

 WorkerController controller = new WorkerController();

 controller.startThreads();

 Logger.log("Main thread started threads");

 }

}

Example run with 2000 (2 seconds) timeout

1647366690761 Main thread starting
1647366690763 T:13 about to acquire lock...
1647366690764 Main thread started threads
1647366690764 T:14 about to acquire lock...
1647366690764 T:15 about to acquire lock...
1647366690764 T:16 about to acquire lock...
1647366690764 T:13 1 - GOT the LOCK Start work
1647366690764 T:13 2
1647366690764 T:13 3
1647366690764 T:17 about to acquire lock...
1647366690764 T:18 about to acquire lock...
1647366690765 T:19 about to acquire lock...
1647366690765 T:20 about to acquire lock...
1647366691543 T:13 4 -0.05361478989054746
1647366691543 T:13 5
1647366691543 T:13 6
1647366691543 T:13 7 Finished work
1647366691543 T:16 1 - GOT the LOCK Start work
1647366691543 T:16 2
1647366691543 T:16 3
1647366692278 T:16 4 -0.05361478989054746
1647366692278 T:16 5
1647366692278 T:16 6
1647366692278 T:16 7 Finished work
1647366692279 T:14 1 - GOT the LOCK Start work
1647366692279 T:14 2
1647366692279 T:14 3
1647366692779 T:19 Failed to acquire lock: TIME_OUT
1647366692779 T:18 Failed to acquire lock: TIME_OUT
1647366692779 T:15 Failed to acquire lock: TIME_OUT
1647366692779 T:20 Failed to acquire lock: TIME_OUT
1647366692779 T:17 Failed to acquire lock: TIME_OUT
1647366692998 T:14 4 -0.05361478989054746
1647366692998 T:14 5
1647366692998 T:14 6
1647366692998 T:14 7 Finished work

Thread 16 waited 779ms for the lock. Subtract 1647366691543 – 1647366690764 = 779

1647366690764 T:16 about to acquire lock...
1647366691543 T:16 1 - GOT the LOCK Start work

Thread 19 timed out. Subtract 1647366692779 - 1647366690765 = 2014

1647366690765 T:19 about to acquire lock...
1647366692779 T:19 Failed to acquire lock: TIME_OUT

CountDown class

Constructors

Constructor and Description

CountDown(String name, int countDown)

Constructs a CountDown with the given name. When the countdown reaches ZERO a signal is generated.

Implements: CountDowner

Method Summary

 Methods

Modifier and Type Method and Description

void countDown()

Decrements the counter and signals when the counter
reaches ZERO

void waitUntilDone ()

Waits for s signal generated via the countDown method

package threadSynch;

public interface CountDowner {

 public void countDown();

}

javascript:show(8);

This waits forever.

package threadSynch;

import threadSynch.TimedMutex.AcquireLockStatus;

public class CountDown implements CountDowner {

 private final Object privateSignal;

 private boolean allDone = false;

 private int currentCountDown;

 public CountDown(int countDown) {

 privateSignal = new Object();

 currentCountDown=countDown;

 if (currentCountDown < 1) {

 currentCountDown = 1;

 }

 }

 public void countDown() {

 synchronized(privateSignal) {

 if (!allDone) {

 currentCountDown = currentCountDown -1;

 allDone = currentCountDown == 0;

 if (allDone) {

 privateSignal.notify();

 }

 }

 }

 }

 public AcquireLockStatus waitUntilDone() {

 AcquireLockStatus lockStatus = null;

 synchronized(privateSignal) {

 if (allDone)

 {

 lockStatus = AcquireLockStatus.ACQUIRED;

 } else {

 try {

 privateSignal.wait();

 } catch (InterruptedException IE) {

 lockStatus = AcquireLockStatus.INTERRUPTED;

 }

 catch (IllegalArgumentException IAE) {

 // we checked - our timeOutMilli is legal

 }

 catch (IllegalMonitorStateException IMSE) {

 // we are in a synch block

 }

 if (lockStatus == null) {

 lockStatus = AcquireLockStatus.ACQUIRED;

 }

 }

 return lockStatus;

 }

 }

}

When a Count Downer invokes the countdown we simple decrement our counter; when the counter reaches ZERO

we signal. The signal indicates that the countdown has completed – 10, 9, 8…2,1,0 Blast OFF!

Example
Here is an example Count Downer

package workerThread;

import java.util.ArrayList;

import java.util.List;

import Log.Logger;

import simulation.CpuHog;

import threadSynch.CountDowner;

public class LoggingWorkerBee implements Runnable {

 private final Logger myLogger;

 private final List<String> myStats;

 private CountDowner countDown;

 public LoggingWorkerBee (CountDowner countDown) {

 myLogger = Logger.logger;

 myStats = new ArrayList<String>();

 this.countDown = countDown;

 }

 @Override

 public void run() {

 long myID = Thread.currentThread().getId();

 myLogger.logInfo ("Worker BEE Thread: " + myID + " Starting up");

 CpuHog.doIt();

 myStats.add("Worker BEE Thread: " + myID + " Stats");

 myStats.add(" Number of sales: 1299");

 myStats.add(" Number of refunds: 23");

 myStats.add(" Number of Frauds detected: 2");

 myStats.add(" Average sales amount $239.89");

 myLogger.logInfo(myStats);

 myLogger.logInfo ("Worker BEE Thread: " + myID + " returning from run");

 countDown.countDown();

 }

}

Here is a count down with a time out.

package threadSynch;

import threadSynch.TimedMutex.AcquireLockStatus;

public class TimedCountDown implements CountDowner {

 private final Object privateSignal;

 private final long timeOutMilli;

 private boolean allDone = false;

 private int currentCountDown;

 public TimedCountDown(int countDown) {

 this(countDown, 0L);

 }

 public TimedCountDown(int countDown, long timeOutMilli) {

 privateSignal = new Object();

 this.timeOutMilli = Math.abs(timeOutMilli); // make sure it is valid

 currentCountDown=countDown;

 if (currentCountDown < 1) {

 currentCountDown = 1;

 }

 }

 public void countDown() {

 synchronized(privateSignal) {

 if (!allDone) {

 currentCountDown = currentCountDown -1;

 allDone = currentCountDown == 0;

 if (allDone) {

 privateSignal.notify();

 }

 }

 }

 }

 public AcquireLockStatus waitUntilDone() {

 AcquireLockStatus lockStatus = null;

 synchronized(privateSignal) {

 if (allDone)

 {

 lockStatus = AcquireLockStatus.ACQUIRED;

 } else {

 long startWaitTimeNano = System.nanoTime();

 try {

 privateSignal.wait(timeOutMilli);

 }catch (InterruptedException IE) {

 lockStatus = AcquireLockStatus.INTERRUPTED;

 }

 catch (IllegalArgumentException IAE) {

 // we checked - our timeOutMilli is legal

 }

 catch (IllegalMonitorStateException IMSE) {

 // we are in a synch block

 }

 if (lockStatus == null) {

 long elapsedWaitTimeNano =

 System.nanoTime() - startWaitTimeNano;

 boolean timedOut = timeOutMilli > 0 &&

 elapsedWaitTimeNano >= 1000000*timeOutMilli;

 if (timedOut) {

 lockStatus = AcquireLockStatus.TIME_OUT;

 } else {

 lockStatus = AcquireLockStatus.ACQUIRED;

 }

 }

 }

 return lockStatus;

 }

 }

}

We will use main as our controller who owns the Count Down.

package main;

import java.util.ArrayList;

import java.util.List;

import Log.Logger;

import threadSynch.CountDown;

import threadSynch.TimedCountDown;

import threadSynch.TimedMutex.AcquireLockStatus;

import workerThread.LoggingWorkerBee;

public class Main {

 public static void main(String[] args) {

 Logger myLogger = Logger.logger;

 myLogger.logInfo("---> Main thread starting");

 List<Thread> threads = new ArrayList<Thread>();

 final int numThreads = 5;

 // Test cases

 //TimedCountDown countDown = new TimedCountDown(numThreads, 1800);

 TimedCountDown countDown = new TimedCountDown(numThreads, 1600);

 // CountDown countDown = new CountDown(numThreads);

 int I = 0;

 while (I < numThreads) {

 Thread t = new Thread(new LoggingWorkerBee(countDown));

 threads.add(t);

 I++;

 }

 for (Thread t: threads) {

 t.start();

 }

 myLogger.logInfo("---> Main thread started threads ... we wait here");

 AcquireLockStatus status = countDown.waitUntilDone();

 myLogger.logInfo(

 "---> Main. Bees are done...Main thread stopping logger and exiting status: "+status);

 myLogger.shutDown();

 }

}

A run with TimedCountDown countDown = new TimedCountDown(numThreads, 1600);

 1647382038833: INFO ---> Main thread starting
1647382038836: INFO Worker BEE Thread: 14 Starting up
1647382038836: INFO ---> Main thread started threads ... we wait here
1647382038836: INFO Worker BEE Thread: 15 Starting up
1647382038836: INFO Worker BEE Thread: 16 Starting up
1647382038837: INFO Worker BEE Thread: 18 Starting up
1647382038837: INFO Worker BEE Thread: 17 Starting up
1647382038837: INFO Thread: 17 CPU hog Start
1647382038839: INFO Thread: 18 CPU hog Start
1647382038841: INFO Thread: 16 CPU hog Start
1647382038849: INFO Thread: 14 CPU hog Start
1647382038873: INFO Thread: 15 CPU hog Start
1647382040468: INFO ---> Main.. Bees are done...Main thread stopping logger and exiting. status: TIME_OUT
1647382040468: SHUTDOWN Shut down requested

Elapsed time before timeout – we did NOT give the workers enough time
1647382040468 – 1647382038833 = 1,635ms

The workers were still working when we timed out. Hummm! be careful here

A run with TimedCountDown countDown = new TimedCountDown(numThreads, 1700);

1647382679500: INFO ---> Main thread starting
1647382679502: INFO Worker BEE Thread: 15 Starting up
1647382679502: INFO Worker BEE Thread: 14 Starting up
1647382679502: INFO ---> Main thread started threads ... we wait here
1647382679502: INFO Worker BEE Thread: 16 Starting up
1647382679502: INFO Worker BEE Thread: 17 Starting up
1647382679502: INFO Worker BEE Thread: 18 Starting up
1647382679503: INFO Thread: 17 CPU hog Start
1647382679503: INFO Thread: 16 CPU hog Start
1647382679503: INFO Thread: 18 CPU hog Start
1647382679508: INFO Thread: 15 CPU hog Start
1647382679503: INFO Thread: 14 CPU hog Start
1647382681210: INFO Thread: 17 CPU hog Completed
1647382681210: INFO Worker BEE Thread: 17 Stats
1647382681210: INFO Number of sales: 1299
1647382681210: INFO Number of refunds: 23
1647382681210: INFO Number of Frauds detected: 2
1647382681210: INFO Average sales amount $239.89
1647382681210: INFO Worker BEE Thread: 17 returning from run
1647382681214: INFO ---> Main.. Bees are done...Main thread stopping logger and
exiting. status: TIME_OUT
1647382681214: SHUTDOWN Shut down requested

One worker finished
Try this and re-run main. In main add a pause.

. . .

myLogger.logInfo("---> Main.. Bees are done...Main thread stopping logger and exiting. status: "+status);

System.out.println("Hit key to exit program...");

try {

 System.in.read();

} catch (IOException e) {

 //

e.printStackTrace();

}

myLogger.shutDown();

} //exit main

A run with TimedCountDown countDown = new TimedCountDown(numThreads, 2000);

1647382146879: INFO ---> Main thread starting
1647382146881: INFO Worker BEE Thread: 14 Starting up
1647382146881: INFO Worker BEE Thread: 16 Starting up
1647382146881: INFO ---> Main thread started threads ... we wait here
1647382146881: INFO Worker BEE Thread: 15 Starting up
1647382146881: INFO Worker BEE Thread: 18 Starting up
1647382146881: INFO Worker BEE Thread: 17 Starting up
1647382146882: INFO Thread: 16 CPU hog Start
1647382146882: INFO Thread: 14 CPU hog Start
1647382146882: INFO Thread: 15 CPU hog Start
1647382146882: INFO Thread: 17 CPU hog Start
1647382146882: INFO Thread: 18 CPU hog Start
1647382148566: INFO Thread: 14 CPU hog Completed
1647382148566: INFO Worker BEE Thread: 14 Stats
1647382148566: INFO Number of sales: 1299
1647382148566: INFO Number of refunds: 23
1647382148566: INFO Number of Frauds detected: 2
1647382148566: INFO Average sales amount $239.89
1647382148566: INFO Worker BEE Thread: 14 returning from run
1647382148588: INFO Thread: 15 CPU hog Completed
1647382148588: INFO Worker BEE Thread: 15 Stats
1647382148588: INFO Number of sales: 1299
1647382148588: INFO Number of refunds: 23
1647382148588: INFO Number of Frauds detected: 2
1647382148588: INFO Average sales amount $239.89
1647382148588: INFO Worker BEE Thread: 15 returning from run
1647382148605: INFO Thread: 17 CPU hog Completed
1647382148605: INFO Worker BEE Thread: 17 Stats
1647382148605: INFO Number of sales: 1299
1647382148605: INFO Number of refunds: 23
1647382148605: INFO Number of Frauds detected: 2
1647382148605: INFO Average sales amount $239.89
1647382148605: INFO Worker BEE Thread: 17 returning from run
1647382148623: INFO Thread: 16 CPU hog Completed
1647382148623: INFO Worker BEE Thread: 16 Stats
1647382148623: INFO Number of sales: 1299
1647382148623: INFO Number of refunds: 23
1647382148623: INFO Number of Frauds detected: 2
1647382148623: INFO Average sales amount $239.89
1647382148623: INFO Worker BEE Thread: 16 returning from run
1647382148628: INFO Thread: 18 CPU hog Completed
1647382148628: INFO Worker BEE Thread: 18 Stats
1647382148628: INFO Number of sales: 1299
1647382148628: INFO Number of refunds: 23
1647382148628: INFO Number of Frauds detected: 2
1647382148628: INFO Average sales amount $239.89
1647382148628: INFO Worker BEE Thread: 18 returning from run
1647382148628: INFO ---> Main.. Bees are done...Main thread stopping logger and exiting. status: ACQUIRED
1647382148629: SHUTDOWN Shut down requested

Total elapsed time 1647382148629 - 1647382146879 = 1750ms

A run with CountDown countDown = new CountDown(numThreads);

1647382256169: INFO ---> Main thread starting
1647382256171: INFO Worker BEE Thread: 14 Starting up
1647382256171: INFO ---> Main thread started threads ... we wait here
1647382256171: INFO Worker BEE Thread: 15 Starting up
1647382256171: INFO Worker BEE Thread: 16 Starting up
1647382256171: INFO Worker BEE Thread: 17 Starting up
1647382256171: INFO Worker BEE Thread: 18 Starting up
1647382256172: INFO Thread: 17 CPU hog Start
1647382256172: INFO Thread: 16 CPU hog Start
1647382256172: INFO Thread: 18 CPU hog Start
1647382256172: INFO Thread: 15 CPU hog Start
1647382256172: INFO Thread: 14 CPU hog Start
1647382257885: INFO Thread: 17 CPU hog Completed
1647382257885: INFO Worker BEE Thread: 17 Stats
1647382257885: INFO Number of sales: 1299
1647382257885: INFO Number of refunds: 23
1647382257885: INFO Number of Frauds detected: 2
1647382257885: INFO Average sales amount $239.89
1647382257885: INFO Worker BEE Thread: 17 returning from run
1647382257893: INFO Thread: 15 CPU hog Completed
1647382257893: INFO Worker BEE Thread: 15 Stats
1647382257893: INFO Number of sales: 1299
1647382257893: INFO Number of refunds: 23
1647382257893: INFO Number of Frauds detected: 2
1647382257893: INFO Average sales amount $239.89
1647382257893: INFO Worker BEE Thread: 15 returning from run
1647382257894: INFO Thread: 18 CPU hog Completed
1647382257894: INFO Worker BEE Thread: 18 Stats
1647382257894: INFO Number of sales: 1299
1647382257894: INFO Number of refunds: 23
1647382257894: INFO Number of Frauds detected: 2
1647382257894: INFO Average sales amount $239.89
1647382257894: INFO Worker BEE Thread: 18 returning from run
1647382257899: INFO Thread: 16 CPU hog Completed
1647382257899: INFO Worker BEE Thread: 16 Stats
1647382257899: INFO Number of sales: 1299
1647382257899: INFO Number of refunds: 23
1647382257899: INFO Number of Frauds detected: 2
1647382257899: INFO Average sales amount $239.89
1647382257899: INFO Worker BEE Thread: 16 returning from run
1647382257911: INFO Thread: 14 CPU hog Completed
1647382257911: INFO Worker BEE Thread: 14 Stats
1647382257911: INFO Number of sales: 1299
1647382257911: INFO Number of refunds: 23
1647382257911: INFO Number of Frauds detected: 2
1647382257911: INFO Average sales amount $239.89
1647382257911: INFO Worker BEE Thread: 14 returning from run

1647382257912: INFO ---> Main.. Bees are done...Main thread stopping logger and exiting. status: ACQUIRED
1647382257912: SHUTDOWN Shut down requested
Total elapsed time 1647382257912- 1647382256169= 1,743ms

We again emphasize that our exercises here (roll our own) are for learning purposes. The java language already

provides a countdown mechanism which is what you should use in your professional work!

Here it is in use!

package main;

import java.util.ArrayList;

import java.util.List;

import java.util.concurrent.CountDownLatch;

import Log.Logger;

import workerThread.LoggingWorkerBee;

public class Main {

 public static void main(String[] args) {

 Logger myLogger = Logger.logger;

 myLogger.logInfo("---> Main thread starting");

 List<Thread> threads = new ArrayList<Thread>();

 final int numThreads = 5;

 // CountDown countDown = new CountDown(numThreads);

 CountDownLatch countDown = new CountDownLatch(numThreads);

 int I = 0;

 while (I < numThreads) {

 Thread t = new Thread(new LoggingWorkerBee(countDown));

 threads.add(t);

 I++;

 }

 for (Thread t: threads) {

 t.start();

 }

 myLogger.logInfo("---> Main thread started threads ... we wait here");

 try {

 countDown.await() ;

 } catch (InterruptedException e) {

 myLogger.logInfo("---> Main..Interrupted while waiting....");

 }

 myLogger.logInfo("---> Main.. Bees are done...Main exiting.");

 myLogger.shutDown();

 }

}

A run1647383382696: INFO ---> Main thread starting

1647383382697: INFO Worker BEE Thread: 14 Starting up
1647383382697: INFO ---> Main thread started threads ... we wait here
1647383382698: INFO Worker BEE Thread: 15 Starting up
1647383382698: INFO Thread: 14 CPU hog Start
1647383382698: INFO Thread: 15 CPU hog Start
1647383382698: INFO Worker BEE Thread: 17 Starting up
1647383382698: INFO Thread: 17 CPU hog Start
1647383382730: INFO Worker BEE Thread: 16 Starting up
1647383382730: INFO Thread: 16 CPU hog Start
1647383382730: INFO Worker BEE Thread: 18 Starting up
1647383382730: INFO Thread: 18 CPU hog Start
1647383384408: INFO Thread: 17 CPU hog Completed
1647383384408: INFO Worker BEE Thread: 17 Stats
1647383384408: INFO Number of sales: 1299
1647383384408: INFO Number of refunds: 23
1647383384408: INFO Number of Frauds detected: 2
1647383384408: INFO Average sales amount $239.89
1647383384408: INFO Worker BEE Thread: 17 returning from run
1647383384420: INFO Thread: 14 CPU hog Completed
1647383384420: INFO Worker BEE Thread: 14 Stats
1647383384420: INFO Number of sales: 1299
1647383384420: INFO Number of refunds: 23
1647383384420: INFO Number of Frauds detected: 2
1647383384420: INFO Average sales amount $239.89
1647383384420: INFO Worker BEE Thread: 14 returning from run
1647383384422: INFO Thread: 16 CPU hog Completed
1647383384422: INFO Worker BEE Thread: 16 Stats
1647383384422: INFO Number of sales: 1299
1647383384422: INFO Number of refunds: 23
1647383384422: INFO Number of Frauds detected: 2
1647383384422: INFO Average sales amount $239.89
1647383384422: INFO Worker BEE Thread: 16 returning from run
1647383384428: INFO Thread: 18 CPU hog Completed
1647383384428: INFO Worker BEE Thread: 18 Stats
1647383384428: INFO Number of sales: 1299
1647383384428: INFO Number of refunds: 23
1647383384428: INFO Number of Frauds detected: 2
1647383384428: INFO Average sales amount $239.89
1647383384428: INFO Worker BEE Thread: 18 returning from run
1647383384454: INFO Thread: 15 CPU hog Completed
1647383384454: INFO Worker BEE Thread: 15 Stats
1647383384454: INFO Number of sales: 1299
1647383384454: INFO Number of refunds: 23
1647383384454: INFO Number of Frauds detected: 2
1647383384454: INFO Average sales amount $239.89
1647383384454: INFO Worker BEE Thread: 15 returning from run
1647383384455: INFO ---> Main.. Bees are done...Main thread exiting.
1647383384455: SHUTDOWN Shut down requested
Elapsed time: 1647383384455 - 1647383382696 = 1,759ms

The End

